8,034 research outputs found

    Constraint-based Autonomic Reconfiguration

    Get PDF

    Optimal Cosmic-Ray Detection for Nondestructive Read Ramps

    Full text link
    Cosmic rays are a known problem in astronomy, causing both loss of data and data inaccuracy. The problem becomes even more extreme when considering data from a high-radiation environment, such as in orbit around Earth or outside the Earth's magnetic field altogether, unprotected, as will be the case for the James Webb Space Telescope (JWST). For JWST, all the instruments employ nondestructive readout schemes. The most common of these will be "up the ramp" sampling, where the detector is read out regularly during the ramp. We study three methods to correct for cosmic rays in these ramps: a two-point difference method, a deviation from the fit method, and a y-intercept method. We apply these methods to simulated nondestructive read ramps with single-sample groups and varying combinations of flux, number of samples, number of cosmic rays, cosmic-ray location in the exposure, and cosmic-ray strength. We show that the y-intercept method is the optimal detection method in the read-noise-dominated regime, while both the y-intercept method and the two-point difference method are best in the photon-noise-dominated regime, with the latter requiring fewer computations.Comment: To be published in PASP. This paper is 12 pages long and includes 15 figure

    Gas-Surface Dynamics and Profile Evolution during Etching of Silicon

    Get PDF
    Scattering of energetic F atoms on a fluorinated Si surface is studied by molecular beam methods. The energy transfer closely follows hard-sphere collision kinematics. Energy and angular distributions of unreacted F atoms suggest significant multiple-bounce scattering in addition to single-bounce scattering and trapping desorption. An empirical model of the atom-surface interaction dynamics is used in a Monte Carlo simulation of topography evolution during neutral beam etching of Si. Model predictions of profile phenomena are validated by experiments

    Mean-field results on the Anderson impurity model out of equilibrium

    Full text link
    We investigate the mean-field phase diagram of the Anderson impurity model out of equilibrium. Generalising the unrestricted Hartree-Fock approach to the non-equilibrium situation we derive and analyse the system of equations defining the critical surface separating the magnetic regime from the non-magnetic one. An exact analytic solution for the phase boundary as a function of the applied voltage is found in the symmetric case. Surprisingly, we find that as soon as there is an asymmetry, even small, between the contacts, no finite voltage is able to destroy the magnetic regime which persists at arbitrary high voltages.Comment: 4 pages, 2 figures (eps files); to appear in PRB Brief Report
    corecore