933 research outputs found

    Parton Distributions in the Valon Model

    Get PDF
    The parton distribution functions determined by CTEQ at low Q2Q^2 are used as inputs to test the validity of the valon model. The valon distributions in a nucleon are first found to be nearly QQ independent. The parton distribution in a valon are shown to be consistent with being universal, independent of the valon type. The momentum fractions of the partons in the valon add up separately to one. These properties affirm the validity of the valon model. The various distributions are parameterized for convenient application of the model.Comment: 9 pages + 9 figures in ep

    On-chip mode-locked laser diode structure using multimode interference reflectors

    Get PDF
    We report, for the first time to our knowledge, an on-chip mode-locked laser diode (OCMLLD) that employs multimode interference reflectors to eliminate the need of facet mirrors to form the cavity. The result is an OCMLLD that does not require cleaved facets to operate, enabling us to locate this OCMLLD at any location within the photonic chip. This OCMLLD provides a simple source of optical pulses that can be inserted within a photonic integrated circuit chip for subsequent photonic signal processing operations within the chip (modulation, optical filtering, pulse rate multiplication, and so on). The device was designed using standardized building blocks of a generic active/passive InP technology platform, fabricated in a multi-project wafer run, and achieved mode-locking operation at its fundamental frequency, given the uncertainty at the design step of the optical length of these mirrors, critical to achieve colliding pulse mode-locked operation. © 2014 Chinese Laser Pres

    Torque magnetometry of an amorphous-alumina/strontium-titanate interface

    Get PDF
    We report torque magnetometry measurements of an oxide heterostructure consisting of an amorphous Al2O3 thin film grown on a crystalline SrTiO3 substrate (a-AO/STO) by atomic layer deposition. We find a torque response that resembles previous studies of crystalline LaAlO3/SrTiO3 (LAO/STO) heterointerfaces, consistent with strongly anisotropic magnetic ordering in the plane of the interface. Unlike crystalline LAO, amorphous Al2O3 is nonpolar, indicating that planar magnetism at an oxide interface is possible without the strong internal electric fields generated within the polarization catastrophe model. We discuss our results in the context of current theoretical efforts to explain magnetism in crystalline LAO/STO.Chemistry and Chemical Biolog

    Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    Get PDF
    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation of the Optical Spectrum and by measuring the frequency spacing between the modes. This component is a promising candidate for Stable Millimeter-Wave Generation in ultra-wideband wireless communication links. Multimode Interference Reflectors are very versatile components that allow avoiding the required cleaved facets to operate

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<Μ<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot

    Differentiating Fissure-Fed Lava Flow Types and Facies Using RADAR and LiDAR: An Example from the 2014–2015 Holuhraun Lava Flow-field

    Get PDF
    Distinguishing between lava types and facies using remote sensing data is important for interpreting the emplacement history of lava flow-fields on Earth and other planetary bodies. Lava facies typically include a mixture of lava types and record the collective emplacement history of material preserved at a particular location. We seek to determine if lava facies in the 2014–2015 Holuhraun lava flow-field are discernible using radar roughness analysis. Furthermore, we also seek to distinguish between lava types using high resolution Light Detection and Ranging (LiDAR) data. We extracted circular polarization ratios (CPR) from the Uninhabited Aerial Vehicle Synthetic Aperture Radar and cross-polarization (VH/VV) data from the Sentinel-1 satellite to analyze the surface roughness of three previously mapped lava facies: rubbly, spiny, and undifferentiated rubbly–spiny. Using the Kruskal-Wallis test, we reveal that all but one pair of the facies are statistically separable. However, the populations overlap by 88%–89% for CPR and 64%–67% for VH/VV. Therefore, owing to large sample populations (n \u3e 2 × 105), slight differences in radar data may be used to probabilistically infer the presence of a particular facies, but not directly map them. We also calculated the root-mean-square slope and Hurst exponents of five different lava types using LiDAR topography (5 cm/pixel). Our results show minute differences between most of the lava types, with the exception of the rubbly pāhoehoe, which is discernible at 1σ. In brief, the presence of “transitional” lava types (e.g., rubbly pāhoehoe) within fissure-fed lava flow-fields complicates remote sensing-based mapping

    Young star clusters in M31

    Full text link
    In our study of M31's globular cluster system with MMT/Hectospec, we have obtained high-quality spectra of 85 clusters with ages less than 1 Gyr. With the exception of Hubble V, the young cluster in NGC 205, we find that these young clusters have kinematics and spatial distribution consistent with membership in M31's young disk. Preliminary estimates of the cluster masses and structural parameters, using spectroscopically derived ages and HST imaging, confirms earlier suggestions that M31 has clusters similar to the LMC's young populous clusters.Comment: 4 pages, 1 figure, contributed talk at "Galaxies in the Local Volume" conference in Sydney, July 200

    Fano Resonances in Electronic Transport through a Single Electron Transistor

    Full text link
    We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR

    Fully monolithic photonic integrated circuits for microwave and millimeter wave signal generation

    Get PDF
    We present two different photonic integrated circuits aimed to generate electrical signals within the microwave and millimeter wave range with two different techniques. The first approach uses the heterodyne technique, implementing a monolithic dual wavelength source by integrating on a single chip two distributed feedback (DFB) lasers together with the high speed photodiode. The second approach, using mode locked lasers, describes a novel device structure based on multimode interference reflectors (MIR)
    • 

    corecore