200 research outputs found

    Phosphorus limitation of primary productivity in the eastern Mediterranean Sea

    Get PDF
    Although NO3- is generally considered to limit primary productivity in most of the world’s oceans, previous studies have suggested the Mediterranean Sea may be an exception. In this study of the southeastern Mediterranean, we found that all the PO43- was removed from the upper water column during the winter phytoplankton bloom in the core and boundary of a warm-core eddy, while measurable (0.3-0.6 µM) NO3- remained. The N:P (NO3-: PO43-) ratio in the core and boundary of the Cyprus eddy was 27.4 and the slope of the linear portion of the N vs. P scattergram with 25.5 with a positive intercept of 0.5 µM on the NO3- axis. A similar N:P ratio (28-29), slope (21-23), and intercept (0.9-1.1) was found for the water column across much of the southern Levantine basin. These data, taken together with the results of incubation experiments, lead us to conclude that the southeastern Mediterranean is strongly P limited. The degree of P limitation increases from west to east across the entire basin. We suggest that removal of PO43 by adsorbtion on Fe- rich dust particles may be an important process controlling the concentration of P in the water column

    Multi-parameter scaling of the Kondo effect in quantum dots with an even number of electrons

    Full text link
    We address a recent theoretical discrepancy concerning the Kondo effect in quantum dots with an even number of electrons where spin-singlet and -triplet states are nearly degenerate. We show that the discrepancy arises from the fact that the Kondo scaling involves many parameters, which makes the results depend on concrete microscopic models. We illustrate this by the scaling calculations of the Kondo temperature, TKT_K, as a function of the energy difference between the singlet and triplet states Δ\Delta. TK(Δ)T_K(\Delta) decreases with increasing Δ\Delta, showing a crossover from a power law with a universal exponent to that with a nonuniversal exponent. The crossover depends on the initial parameters of the model.Comment: 8 pages, 3 figure

    Kondo effect in multielectron quantum dots at high magnetic fields

    Full text link
    We present a general description of low temperature transport through a quantum dot with any number of electrons at filling factor 1<ν<21<\nu <2. We provide a general description of a novel Kondo effect which is turned on by application of an appropriate magnetic field. The spin-flip scattering of carriers by the quantum dot only involves two states of the scatterer which may have a large spin. This process is described by spin-flip Hubbard operators, which change the angular momentum, leading to a Kondo Hamiltonian. We obtain antiferromagnetic exchange couplings depending on tunneling amplitudes and correlation effects. Since Kondo temperature has an exponential dependence on exchange couplings, quantitative variations of the parameters in different regimes have important experimental consequences. In particular, we discuss the {\it chess board} aspect of the experimental conductance when represented in a grey scale as a function of both the magnetic field and the gate potential affecting the quantum dot

    Fermi liquid theory for the Anderson model out of equilibrium

    Full text link
    We study low-energy properties of the Anderson impurity under a finite bias voltage VV using the perturbation theory in UU of Yamada and Yosida in the nonequilibrium Keldysh diagrammatic formalism, and obtain the Ward identities for the derivative of the self-energy with respect to VV. The self-energy is calculated exactly up to terms of order ω2\omega^2, T2T^2 and V2V^2, and the coefficients are defined with respect to the equilibrium ground state. From these results, the nonlinear response of the current through the impurity has been deduced up to order V3V^3.Comment: 8 pages, 1 figur

    Mesoscopic Fluctuations in Quantum Dots in the Kondo Regime

    Full text link
    Properties of the Kondo effect in quantum dots depend sensitively on the coupling parameters and so on the realization of the quantum dot -- the Kondo temperature itself becomes a mesoscopic quantity. Assuming chaotic dynamics in the dot, we use random matrix theory to calculate the distribution of both the Kondo temperature and the conductance in the Coulomb blockade regime. We study two experimentally relevant cases: leads with single channels and leads with many channels. In the single-channel case, the distribution of the conductance is very wide as TKT_K fluctuates on a logarithmic scale. As the number of channels increases, there is a slow crossover to a self-averaging regime.Comment: 4 pages, 3 figure

    Singlet-Triplet Transition in lateral Quantum Dots: A Numerical Renormalization Group Study

    Full text link
    We discuss transport through a lateral quantum dot in the vicinity of a singlet-triplet spin transition in its ground state. Extracting the scattering phase shifts from the numerical renormalization group spectra, we determine the linear conductance at zero temperature as a function of a Zeeman field and the splitting of the singlet and triplet states. We find reduced low-energy transport, and a non-monotonic magnetic field dependence both in the singlet and the triplet regime. For a generic set of dot parameters and no Zeeman splitting, the singlet-triplet transition may be identified with the conductance maximum. The conductance is least sensitive to the magnetic field in the region of the transition, where it decreases upon application of a magnetic field. Our results are in good agreement with recent experimental data.Comment: 9 pages Revtex, 10 eps figure

    Spin Fluctuation and Persistent Current in a Mesoscopic Ring Coupled to a Quantum Dot

    Full text link
    We investigate the persistent current influenced by the spin fluctuations in a mesoscopic ring weakly coupled to a quantum dot. It is shown that the Kondo effect gives rise to some unusual features of the persistent current in the limit where the charge transfer between two subsystems is suppressed. Various aspects of the crossover from a delocalized to a localized dot limit are discussed in relation with the effect of the coherent response of the Kondo cloud to the Aharonov-Bohm flux.Comment: 4 pages, 2 figure

    Fano Resonances in Electronic Transport through a Single Electron Transistor

    Full text link
    We have observed asymmetric Fano resonances in the conductance of a single electron transistor resulting from interference between a resonant and a nonresonant path through the system. The resonant component shows all the features typical of quantum dots, but the origin of the non-resonant path is unclear. A unique feature of this experimental system, compared to others that show Fano line shapes, is that changing the voltages on various gates allows one to alter the interference between the two paths.Comment: 8 pages, 6 figures. Submitted to PR

    Kondo effect induced by a magnetic field

    Full text link
    We study peculiarities of transport through a Coulomb blockade system tuned to the vicinity of the spin transition in its ground state. Such transitions can be induced in practice by application of a magnetic field. Tunneling of electrons between the dot and leads mixes the states belonging to the ground state manifold of the dot. Remarkably, both the orbital and spin degrees of freedom of the electrons are engaged in the mixing at the singlet-triplet transition point. We present a model which provides an adequate theoretical description of recent experiments with semiconductor quantum dots and carbon nanotubes
    corecore