1,999 research outputs found

    Exploring the American Archivist: Corpus analysis tools and the professional literature

    Get PDF
    The literature of a professional community provides insights into what members of that community value and underscores key professional issues. Periodic analyses of professional literature are an important way for these communities to identify trends that deserve further exploration. This article introduces the use of corpus analysis tools such as Voyant Tools and discusses their value in performing periodic analyses of professional literature. As an example, it presents a limited study examining the use of the term “theory” in the American Archivist

    Temporal response of an injectable calcium phosphate material in a critical size defect

    Get PDF
    BACKGROUND: Calcium phosphate-based bone graft substitutes are used to facilitate healing in bony defects caused by trauma or created during surgery. Here, we present an injectable calcium phosphate-based bone void filler that has been purposefully formulated with hyaluronic acid to offer a longer working time for ease of injection into bony defects that are difficult to access during minimally invasive surgery. METHODS: The bone substitute material deliverability and physical properties were characterized, and in vivo response was evaluated in a critical size distal femur defect in skeletally mature rabbits to 26 weeks. The interface with the host bone, implant degradation, and resorption were assessed with time. RESULTS: The calcium phosphate bone substitute material could be injected as a paste within the working time window of 7-18 min, and then self-cured at body temperature within 10 min. The material reached a maximum ultimate compressive strength of 8.20 +/- 0.95 MPa, similar to trabecular bone. The material was found to be biocompatible and osteoconductive in vivo out to 26 weeks, with new bone formation and normal bone architecture observed at 6 weeks, as demonstrated by histological evaluation, microcomputed tomography, and radiographic evaluation. CONCLUSIONS: These findings show that the material properties and performance are well suited for minimally invasive percutaneous delivery applications

    Capillary Assembly of Anisotropic Particles at Cylindrical Fluid-Fluid Interfaces

    Get PDF
    The unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry. Specifically, we study the self-assembly of single and multiple rods as a function of drop curvature and particle properties such as shape (ellipsoid, cylinder, and spherocylinder), contact angle, aspect ratio, and chemical heterogeneity (homogeneous and triblock patchy). We find that the curved interface allows us to effectively control the orientation of the rods, allowing us to achieve parallel, perpendicular, or novel obliquely orientations with respect to the cylindrical drop. In addition, by tuning particle properties to achieve parallel alignment of the rods, we show that the cylindrical drop geometry favors tip-to-tip assembly of the rods, not just for cylinders, but also for ellipsoids and triblock patchy rods. Finally, for triblock patchy rods with larger contact line undulations, we can achieve strong spatial confinement of the rods transverse to the cylindrical drop due to the capillary repulsion between the contact line undulations of the particle and the pinned contact lines of the sessile drop. Our capillary assembly method allows us to manipulate the configuration of single and multiple rod-like particles and therefore offers a facile strategy for organizing such particles into useful functional materials

    Simulating the effect of perennialized cropping systems on nitrate-N losses using the SWAT model

    Get PDF
    Several newly released crop varieties, including the perennial intermediate wheatgrass (grain marketed as Kernza®), and the winter hardy oilseed crop camelina, have been developed to provide both economic return for farmers and reduced nutrient losses from agricultural fields. Though studies have indicated that these crops could reduce nitrate-nitrogen (N) leaching, little research has been done to determine their effectiveness in reducing nitrate-N loading to surface waters at a watershed scale, or in comparing their performance to more traditional perennial crops, such as alfalfa. In this study, nitrate-N losses were predicted using the Soil and Water Assessment Tool (SWAT) model for the Rogers Creek watershed located in south-central Minnesota, USA. Predicted looses of nitrate-N under three perennialized cropping systems were compared to losses given current cropping practices in a corn (Zea mays L.)-soybean (Glycine max L. Merr.) rotation. The perennialized systems included three separate crop rotations: intermediate wheatgrass (IWG) in rotation with soybean, alfalfa in rotation with corn, and winter camelina in rotation with soybean and winter rye. Model simulation of these rotations required creation of new crop files for IWG and winter camelina within SWAT. These new crop files were validated using measured yield, biomass, and nitrate-N data. Model results show that the IWG and alfalfa rotations were particularly effective at reducing nutrient and sediment losses from agricultural areas in the watershed, but smaller reductions were also achieved with the winter camelina rotation. From model predictions, achieving regional water-quality goals of a 30% reduction in nitrate-N load from fields in the watershed required converting approximately 25, 34, or 57% of current corn-soybean area to the alfalfa, IWG, or camelina rotations, respectively. Results of this study indicate that adoption of these crops could achieve regional water quality goals
    • …
    corecore