1,802 research outputs found

    Cremation practices and the creation of monument complexes: the Neolithic cremation cemetery at Forteviot, Strathearn, Perth & Kinross, Scotland, and its comparanda

    Get PDF
    Around the beginning of the 3rd millennium cal bc a cremation cemetery was established at Forteviot, central Scotland. This place went on to become one of the largest monument complexes identified in Mainland Scotland, with the construction of a palisaded enclosure, timber structures, and a series of henge monuments and other enclosures. The cemetery was established between 3080 and 2900 cal bc, probably in the 30th century cal bc, which is contemporary with the cremation cemetery at Stonehenge. Nine discrete deposits of cremated bone, representing the remains of at least 18 people, were identified. In most instances they were placed within cut features and, in one case, a series of cremation deposits was associated with a broken standing stone. This paper includes the first detailed assessment of the cremated remains at Forteviot and the features associated with the cemetery, and explores how the establishment of this cemetery may have been both a catalyst and inspiration for the elaborate monument building and prolonged acts of remembrance that occurred at this location over a period of almost 1000 years. The paper also outlines the parallels for Forteviot across Britain and, for the first time, draws together the dating evidence (including Bayesian modelling) for this major category of evidence for considering the nature of late 4th/early 3rd millennium cal bc society. The results and discussion have wide implications and resonances for contemplating the establishment and evolution of monument complexes in prehistoric Britain and beyond

    Belief bias during reasoning among religious believers and skeptics

    Get PDF
    We provide evidence that religious skeptics, as compared to believers, are both more reflective and effective in logical reasoning tasks. While recent studies have reported a negative association between an analytic cognitive style and religiosity, they focused exclusively on accuracy, making it difficult to specify potential underlying cognitive mechanisms. The present study extends the previous research by assessing both performance and response times on quintessential logical reasoning problems (syllogisms). Those reporting more religious skepticism made fewer reasoning errors than did believers. This finding remained significant after controlling for general cognitive ability, time spent on the problems, and various demographic variables. Crucial for the purpose of exploring underlying mechanisms, response times indicated that skeptics also spent more time reasoning than did believers. This novel finding suggests a possible role of response slowing during analytic problem solving as a component of cognitive style that promotes overriding intuitive first impressions. Implications for using additional processing measures, such as response time, to investigate individual differences in cognitive style are discussed

    Incorporation of genetic model parameters for cost-effective designs of genetic association studies using DNA pooling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies of association methods using DNA pooling of single nucleotide polymorphisms (SNPs) have focused primarily on the effects of "machine-error", number of replicates, and the size of the pool. We use the non-centrality parameter (NCP) for the analysis of variance test to compute the approximate power for genetic association tests with DNA pooling data on cases and controls. We incorporate genetic model parameters into the computation of the NCP. Parameters involved in the power calculation are disease allele frequency, frequency of the marker SNP allele in coupling with the disease locus, disease prevalence, genotype relative risk, sample size, genetic model, number of pools, number of replicates of each pool, and the proportion of variance of the pooled frequency estimate due to machine variability. We compute power for different settings of number of replicates and total number of genotypings when the genetic model parameters are fixed. Several significance levels are considered, including stringent significance levels (due to the increasing popularity of 100 K and 500 K SNP "chip" data). We use a factorial design with two to four settings of each parameter and multiple regression analysis to assess which parameters most significantly affect power.</p> <p>Results</p> <p>The power can increase substantially as the genotyping number increases. For a fixed number of genotypings, the power is a function of the number of replicates of each pool such that there is a setting with maximum power. The four most significant parameters affecting power for association are: (1) genotype relative risk, (2) genetic model, (3) sample size, and (4) the interaction term between disease and SNP marker allele probabilities.</p> <p>Conclusion</p> <p>For a fixed number of genotypings, there is an optimal number of replicates of each pool that increases as the number of genotypings increases. Power is not substantially reduced when the number of replicates is close to but not equal to the optimal setting.</p

    Itā€™s Still Bullshit: Reply to Dalton (2016)

    Get PDF
    In reply to Dalton (2016), the authors argue that bullshit is defined in terms of how it is produced, not how it is interpreted. They agree that it can be interpreted as profound by some readers (and assumed as much in the original paper). Nonetheless, they present additional evidence against the possibility that more reflective thinkers are more inclined to interpret bullshit statements as profound

    On the Reception and Detection of Pseudo-profound Bullshit

    Get PDF
    Although bullshit is common in everyday life and has attracted attention from philosophers, its reception (critical or ingenuous) has not, to our knowledge, been subject to empirical investigation. Here we focus on pseudo-profound bullshit, which consists of seemingly impressive assertions that are presented as true and meaningful but are actually vacuous. We presented participants with bullshit statements consisting of buzzwords randomly organized into statements with syntactic structure but no discernible meaning (e.g., ā€œWholeness quiets infinite phenomenaā€). Across multiple studies, the propensity to judge bullshit statements as profound was associated with a variety of conceptually relevant variables (e.g., intuitive cognitive style, supernatural belief). Parallel associations were less evident among profundity judgments for more conventionally profound (e.g., ā€œA wet person does not fear the rainā€) or mundane (e.g., ā€œNewborn babies require constant attentionā€) statements. These results support the idea that some people are more receptive to this type of bullshit and that detecting it is not merely a matter of indiscriminate skepticism but rather a discernment of deceptive vagueness in otherwise impressive sounding claims. Our results also suggest that a bias toward accepting statements as true may be an important component of pseudo-profound bullshit receptivity

    Characteristics of replicated single-nucleotide polymorphism genotypes from COGA: Affymetrix and Center for Inherited Disease Research

    Get PDF
    Genetic Analysis Workshop 14 provided re-genotyped single-nucleotide polymorphism (SNP) data. Specifically, both Center for Inherited Disease Research (CIDR) and Affymetrix genotyped the same 11,560 SNPs from the Affymetrix GeneChip Mapping 10K Array marker set on the same 184 individuals from the Collaborative Study on the Genetics of Alcoholism database. While the inconsistency rate between CIDR and Affymetrix (two different genotypes for the same subject) was low (0.2%), the non-replication rate (two different genotypes for the same subject or one identified genotype and one missing genotype) was substantial (9.5%). The missing data could be from no-call regions, which is inconsistent with recent recommendations about the use of no-call regions in association tests. In addition, no-call regions would suggest that the actual inconsistency rate is higher than reported. A high inconsistency rate has significant impact on power in related hypothesis tests. In addition, the data are consistent with assumptions made in a recently proposed likelihood ratio test of association for re-genotyped data

    TDT-HET: A new transmission disequilibrium test that incorporates locus heterogeneity into the analysis of family-based association data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Locus heterogeneity is one of the most documented phenomena in genetics. To date, relatively little work had been done on the development of methods to address locus heterogeneity in genetic association analysis. Motivated by Zhou and Pan's work, we present a mixture model of linked and unlinked trios and develop a statistical method to estimate the probability that a heterozygous parent transmits the disease allele at a di-allelic locus, and the probability that any trio is in the linked group. The purpose here is the development of a test that extends the classic transmission disequilibrium test (<it>TDT</it>) to one that accounts for locus heterogeneity.</p> <p>Results</p> <p>Our simulations suggest that, for sufficiently large sample size (1000 trios) our method has good power to detect association even the proportion of unlinked trios is high (75%). While the median difference (<it>TDT-HET </it>empirical power - <it>TDT </it>empirical power) is approximately 0 for all MOI, there are parameter settings for which the power difference can be substantial. Our multi-locus simulations suggest that our method has good power to detect association as long as the markers are reasonably well-correlated and the genotype relative risk are larger. Results of both single-locus and multi-locus simulations suggest our method maintains the correct type I error rate.</p> <p>Finally, the <it>TDT-HET </it>statistic shows highly significant p-values for most of the idiopathic scoliosis candidate loci, and for some loci, the estimated proportion of unlinked trios approaches or exceeds 50%, suggesting the presence of locus heterogeneity.</p> <p>Conclusions</p> <p>We have developed an extension of the <it>TDT </it>statistic (<it>TDT-HET</it>) that allows for locus heterogeneity among coded trios. Benefits of our method include: estimates of parameters in the presence of heterogeneity, and reasonable power even when the proportion of linked trios is small. Also, we have extended multi-locus methods to <it>TDT-HET </it>and have demonstrated that the empirical power may be high to detect linkage. Last, given that we obtain PPBs, we conjecture that the <it>TDT-HET </it>may be a useful method for correctly identifying linked trios. We anticipate that researchers will find this property increasingly useful as they apply next-generation sequencing data in family based studies.</p
    • ā€¦
    corecore