11 research outputs found

    CD150 and CD180 are involved in regulation of transcription factors expression in chronic lymphocytic leukemia cells

    No full text
    Background: Sequential stages of B-cell development is stringently coordinated by transcription factors (TFs) network that include B-lineage commitment TFs (Ikaros, Runx1/Cbfb, E2A, and FOXO1), B-lineage maintenance TFs (EBF1 and PAX5) and stage specific set of TFs (IRF4, IRF8, BCL6, BLIMP1). Deregulation of TFs expression and activity is often occurs in malignant B cells. The aim of this study was to evaluate TFs expression in chronic lymphocytic leukemia cells taking into consideration CD150 cell surface expression. From other side we attempted to regulate TFs expression via CD150 and CD180 cell surface receptors. Materials and Methods: Studies were performed on normal peripheral blood B-cell subpopulations and chronic lymphocytic leukemia (CLL) cells isolated from peripheral blood of 67 primary untreated patients with CLL. Evaluation of TFs expression was performed on mRNA level using qRT-PCR and on protein level by western blot analysis. Results: Median of PAX5 and EBF1 mRNA expression was higher in cell surface CD150 positive (csCD150⁺) compared to csCD150⁻ CLL cases or normal CD19⁺ and CD19⁺CD5⁺ B-cell subsets. Differences in mRNA expression of IRF8, IRF4 and BLIMP1 between studied groups of CLL and normal B cells were not revealed. All CLL cases were characterized by downregulated expression of PU.1 and BCL6 mRNAs in comparison to normal B cells. At the same time elevated SPIB mRNA expression level was restricted to CLL cells. Protein expression of IRF4, IRF8 and BCL6 was uniformly distributed between csCD150⁻ and csCD150⁺ CLL cases. PU.1 protein and CD20 that is direct PU.1 target gene positively correlated with CD150 cell surface expression on CLL cells. Ligation of CD150 and CD180 alone or in combination upregulated IRF8 and PU.1 while downregulated the IRF4 mRNA expression. Signaling via CD150 or CD180 alone elevated the level of BCL6 mRNA. Strong downregulation of IRF4 mRNA was observed after CD150, CD180 or CD150 and CD180 coligation on CLL cells. We found that in CLL cells CD150 is a negative regulator of SPIB while CD180 is involved in upregulation of EBF1 expression level. Moreover, CD180 ligation on CLL cells caused increase of CD150 mRNA level that is a one of the EBF1 target genes. Conclusions: Analysis of TFs expression profile revealed upregulated SPIB mRNA level and downregulated PU.1 in CLL cells. CD150 and CD180 receptors may modulate transcriptional program in CLL cells by regulating the TFs expression level

    Differential expression of CD150/SLAMF1 in normal and malignant b cells on the different stages of maturation

    No full text
    Background: Within B-cell lineage cell surface receptor CD150/SLAMF1 is broadly expressed starting from pre-B cells with upregulation toward plasma cells. However, expression of CD150 is rather limited on the surface of malignant B cells with the block of differentiation at the different stages of maturation. The aim of our work was to explore CD150 expression both on protein and mRNA levels with the emphasis on CD150 isoforms in malignant B-cell lines at the different stages of maturation in comparison with their normal B cell counterparts. Materials and Methods: Studies were performed on normal tonsillar B-cell subpopulations, Blymphoblastoid cell lines, malignant B-cell lines of different origin, including pre-B acute lymphoblastic leukemia, Burkitt’s lymphoma, Hodgkin’s lymphoma, and multiple myeloma. Protein CD150 expression was assessed by western blot analysis and the expression level of CD150 isoforms was evaluated using qRT-PCR. Results: Despite the similar CD150 expression both on mRNA and protein levels in normal B-cell subsets and B-lymphoblastoid cell lines, malignant B-cell lines demonstrated substantial heterogeneity in CD150 expression. Only Hodgkin’s lymphoma cell lines, Burkitt’s lymphoma cell lines BJAB and Raji, and also pre-B cell line BLIN-1 expressed CD150 protein. At the same time total CD150 and mCD150 mRNA was detected in all studied cell lines excluding pre-B cell line REH. The minor sCD150 isoform was found only in Hodgkin’s lymphoma cell lines and Burkitt’s lymphoma cell line Raji. The nCD150 isoform was broadly expressed in tested B cell lines with exception of REH and Daudi. Conclusion: Malignant Bcell lines at the different stages of maturation only partially resemble their normal counterparts by CD150 expression. In malignant B-cell lines, CD150 expression on mRNA level is much broader than on protein level. CD150 isoforms are differentially expressed in normal and malignant B cells with predominant expression of mCD150 isoform

    Intrinsic defect in B-lymphoblastoid cell lines from patients with X-linked lymphoproliferative disease type 1. I. Cell surface phenotype and functional studies

    No full text
    Background: Mutations in SH2D1A/DSHP/SAP gene are responsible for the onset of X-linked lymphoproliferative disease type 1 (XLP1) that have increased risk for B-cell lymphoma development. In XLP1 patients SAP deficient NK, NKT and CD8+ cytotoxic T cells are inefficient in eliminating EBV-infected proliferating B cells that may partially contribute to the lymphoma development. However, little is known about impairment of B cell characteristics in XLP1. Aim: To analyze the cell surface phenotype and functional characteristics of EBV-transformed B-lymphoblastoid cell lines from XLP1 patients (XLP B-LCLs) in comparison with conventional B-lymphoblastoid cell lines (B-LCLs). Methods: Studies were performed on SAP-negative B-LCLs T5-1, 6.16, RPMI 1788; SAP-positive B-LCL MP-1 and XLP B-LCLs IARC 739, XLP-D, XLP-8005. Cell surface immunophenotyping was performed using flow cytometry analysis. The level of apoptotic cells (Annexin V-binding), cell viability (MTT assay), and cell proliferation (trypan blue exclusion test) were evaluated in response to ligation of CD40, CD95, CD150 and IgM cell surface receptors. Results: A cell surface phenotype and functional features that distinguish XLP B-LCLs from conventional B-LCLs were revealed. XLP B-LCLs showed the upregulated level of CD20, CD38 and CD86 cell surface expression and downregulation of CD40, CD80 and CD150 expression. The major functional differences of XLP B-LCLs from conventional B-LCLs concern the modulation of CD95 apoptosis via CD40 and CD150 receptors and unresponsiveness to proliferative signals triggered by CD40 or colligation of BCR with CD150. Conclusion: The data suggest that the B-LCL from XLP1 patients have an intrinsic defect that affects cell activation, apoptosis, and proliferation. Key Words: B-lymphoblastoid cell lines, X-linked lymphoproliferative disease type 1, CD150, CD40, CD95, apoptosis

    Intrinsic defect in B-lymphoblastoid cell lines from patients with X-linked lymphoproliferative disease type 1. II. Receptor-mediated Akt/PKB and ERK1/2 activation and transcription factors expression profile

    No full text
    Background: X-linked lymphoproliferative disease type 1 (XLP1) belongs to genetically determined primary immunodeficiency syndromes with mutations in SH2D1A/DSHP/SAP gene. The dramatic increase of the risk of B-cell lymphoma development in XLP1 patients is linked not only to SAP deficiency of NK, NKT and T cells, but probably to the impairment of B cell differentiation. Aim: To analyze the receptor-mediated Akt/PKB and ERK1/2 phosphorylation and expression of transcription factors that are involved in B cell maturation in EBV-transformed B-lymphoblastoid cell lines (B-LCLs) from XLP1 patients (XLP B-LCLs) in comparison with conventional B-LCLs. Methods: Studies were performed on EBV-transformed XLP B-LCLs IARC 739, SC-XLP and RP-XLP in comparison with SAP-negative B-LCL T5-1 and SAP-positive B-LCL MP-1. Western blot analysis was used for evaluation of Akt (Ser473) and ERK1/2 (Thr202/Tyr204) phosphorylation in response to ligation of CD150, CD40, and IgM cell surface receptors. The expression levels of transcription factors IRF4, IRF8, BCL6, BLIMP1, SPIB, PU.1 and MITF were assessed using quantitative RT-PCR. Results: It was shown that SAP deficiency in XLP B-LCL did not abrogate CD150-mediated Akt and ERK1/2 phosphorylation. At the same time, ligation of CD150 or IgM affects kinetics and amplitude of ERK1/2 activation. In XLP B-LCL the CD150 signaling with IgM coligation play the dominant role in both Akt and ERK1/2 phosphorylation. We found that significantly reduced IRF4, IRF8 and PU.1 expression levels are the key features of XLP B-LCLs. Conclusion: XLP B-LCLs and conventional B-LCLs have differences in kinetics and amplitude of Akt and ERK1/2 phosphorylation. Analysis of transcription factors profile revealed the distinguishing features of XLP B-LCLs with SAP deficiency that may impair B cell differentiation.Key Words: B-lymphoblastoid cell lines, X-linked lymphoproliferative disease type 1, CD150, CD40, BCR, Akt/PKB, ERK1/2, transcription factors. Key Words: B-lymphoblastoid cell lines, X-linked lymphoproliferative disease type 1, CD150, CD40, BCR, Akt/PKB, ERK1/2, transcription factors

    Large-scale expansion and characterization of human adult neural crest-derived multipotent stem cells from hair follicle for regenerative medicine applications

    No full text
    Aim: The purpose of this work was to obtain, multiply and characterize the adult neural crest-derived multipotent stem cells from human hair follicle for their further clinical use. Materials and Methods: Adult neural crest-derived multipotent stem cells were obtained from human hair follicle by explant method and were expanded at large-scale up to a clinically significant number. The resulted cell cultures were examined by flow cytometry and immunocytochemical analysis. Their clonogenic potential, ability to self-renewal and directed multilineage differentiation were also investigated. Results: Cell cultures were obtained from explants of adult human hair follicles. Resulted cells according to morphological, phenotypic and functional criteria satisfied the definition of neural crest-derived multipotent stem cells. They had the phenotype Sox2⁺Sox10⁺Nestin⁺CD73⁺CD90⁺CD105⁺CD140a⁺CD 140b⁺CD146⁺CD166⁺CD271⁺CD349⁺ CD34⁻CD45⁻CD56⁻HLA⁻DR⁻, showed high clonogenic potential, ability to self-renewal and directed differentiation into the main derivatives of the neural crest: neurons, Schwann cells, adipocytes and osteoblasts. Conclusion: The possibility of a large-scale expansion of adult neural crest-derived multipotent stem cells up to 40–200·106 cells from minimal number of hair follicles with retention of their phenotype and functional properties are the significant step towards their translation into the clinical practice

    Tissue-engineered bone for treatment of combat related limb injuries

    No full text
    Aim: Based on our preliminary positive clinical results with use of cultured bone marrow-derived multipotent mesenchymal stem/stromal cells in traumatology, our aim was to develop living three-dimensional tissue-engineered bone equivalent transplantation technology for restoration of critical sized bone defects caused by combat related high energy trauma. Materials and Methods: To fabricate bone equivalent we used devitalized allogeneic bone scaffolds (blocks and chips) seeded with cultured autologous cells: bone marrow-derived multipotent mesenchymal stem/stromal cells in mix with periosteal progenitor cells and endothelial progenitor cells. Quality/identity of cell cultures was assured by donor and cell culture infection screening (immunofluorescence assay, polymerase chain reaction), flow cytometry (cell phenotype), karyotyping (GTG banding), functional assays (colony forming units analysis, multilineage differentiation assay). Bone defect treatment with bone equivalent application was fully completed in 39 combat-injured with 42 defects. New bone formation was assessed by the radiographic examination. Results: Casualties were included in a treatment program an average of 10.1 months after injury, provided the ineffectiveness of conventional surgery methods. All cell type cultures had a normal karyotype and appropriate phenotype, differentiation potential and functional properties, ~30% colony forming units frequency and hadn’t any signs of cell senescence. The fluorescein diacetate/propidium iodide combined staining and histology analysis of graft samples before transplantation showed their regular seeding with viable cells. Pathomorphological analysis of bone equivalent specimens 3–6 months post-op revealed the active remodeling processes and immature bone tissue formation. Bone defect restoration was observed 5–6 months post-op. Conclusion: The developed biotechnology of living three-dimensional tissue-engineered bone equivalent transplantation with overall effectiveness 90.4% allows restoring the bone integrity, forming new bone tissue in a site of bone defect, and significantly reducing the rehabilitation period of a patient

    CD150 AND CD180 ARE INVOLVED IN REGULATION OF TRANSCRIPTION FACTORS EXPRESSION IN CHRONIC LYMPHOCYTIC LEUKEMIA CELLS

    No full text
    Background: Sequential stages of B-cell development is stringently coordinated by transcription factors (TFs) network that include B-lineage commitment TFs (Ikaros, Runx1/Cbfb, E2A, and FOXO1), B-lineage maintenance TFs (EBF1 and PAX5) and stage specific set of TFs (IRF4, IRF8, BCL6, BLIMP1). Deregulation of TFs expression and activity is often occurs in malignant B cells. The aim of this study was to evaluate TFs expression in chronic lymphocytic leukemia cells taking into consideration CD150 cell surface expression. From other side we attempted to regulate TFs expression via CD150 and CD180 cell surface receptors. Materials and Methods: Studies were performed on normal peripheral blood B-cell subpopulations and chronic lymphocytic leukemia (CLL) cells isolated from peripheral blood of 67 primary untreated patients with CLL. Evaluation of TFs expression was performed on mRNA level using qRT-PCR and on protein level by western blot analysis. Results: Median of PAX5 and EBF1 mRNA expression was higher in cell surface CD150 positive (csCD150⁺) compared to csCD150⁻ CLL cases or normal CD19⁺ and CD19⁺CD5⁺ B-cell subsets. Differences in mRNA expression of IRF8, IRF4 and BLIMP1 between studied groups of CLL and normal B cells were not revealed. All CLL cases were characterized by downregulated expression of PU.1 and BCL6 mRNAs in comparison to normal B cells. At the same time elevated SPIB mRNA expression level was restricted to CLL cells. Protein expression of IRF4, IRF8 and BCL6 was uniformly distributed between csCD150⁻ and csCD150⁺ CLL cases. PU.1 protein and CD20 that is direct PU.1 target gene positively correlated with CD150 cell surface expression on CLL cells. Ligation of CD150 and CD180 alone or in combination upregulated IRF8 and PU.1 while downregulated the IRF4 mRNA expression. Signaling via CD150 or CD180 alone elevated the level of BCL6 mRNA. Strong downregulation of IRF4 mRNA was observed after CD150, CD180 or CD150 and CD180 coligation on CLL cells. We found that in CLL cells CD150 is a negative regulator of SPIB while CD180 is involved in upregulation of EBF1 expression level. Moreover, CD180 ligation on CLL cells caused increase of CD150 mRNA level that is a one of the EBF1 target genes. Conclusions: Analysis of TFs expression profile revealed upregulated SPIB mRNA level and downregulated PU.1 in CLL cells. CD150 and CD180 receptors may modulate transcriptional program in CLL cells by regulating the TFs expression level

    LARGE-SCALE EXPANSION AND CHARACTERIZATION OF HUMAN ADULT NEURAL CREST-DERIVED MULTIPOTENT STEM CELLS FROM HAIR FOLLICLE FOR REGENERATIVE MEDICINE APPLICATIONS

    No full text
    Aim: The purpose of this work was to obtain, multiply and characterize the adult neural crest-derived multipotent stem cells from human hair follicle for their further clinical use. Materials and Methods: Adult neural crest-derived multipotent stem cells were obtained from human hair follicle by explant method and were expanded at large-scale up to a clinically significant number. The resulted cell cultures were examined by flow cytometry and immunocytochemical analysis. Their clonogenic potential, ability to self-renewal and directed multilineage differentiation were also investigated. Results: Cell cultures were obtained from explants of adult human hair follicles. Resulted cells according to morphological, phenotypic and functional criteria satisfied the definition of neural crest-derived multipotent stem cells. They had the phenotype Sox2⁺Sox10⁺Nestin⁺CD73⁺CD90⁺CD105⁺CD140a⁺CD 140b⁺CD146⁺CD166⁺CD271⁺CD349⁺ CD34⁻CD45⁻CD56⁻HLA⁻DR⁻, showed high clonogenic potential, ability to self-renewal and directed differentiation into the main derivatives of the neural crest: neurons, Schwann cells, adipocytes and osteoblasts. Conclusion: The possibility of a large-scale expansion of adult neural crest-derived multipotent stem cells up to 40–200·106 cells from minimal number of hair follicles with retention of their phenotype and functional properties are the significant step towards their translation into the clinical practice

    TISSUE-ENGINEERED BONE FOR TREATMENT OF COMBAT RELATED LIMB INJURIES

    No full text
    Aim: Based on our preliminary positive clinical results with use of cultured bone marrow-derived multipotent mesenchymal stem/stromal cells in traumatology, our aim was to develop living three-dimensional tissue-engineered bone equivalent transplantation technology for restoration of critical sized bone defects caused by combat related high energy trauma. Materials and Methods: To fabricate bone equivalent we used devitalized allogeneic bone scaffolds (blocks and chips) seeded with cultured autologous cells: bone marrow-derived multipotent mesenchymal stem/stromal cells in mix with periosteal progenitor cells and endothelial progenitor cells. Quality/identity of cell cultures was assured by donor and cell culture infection screening (immunofluorescence assay, polymerase chain reaction), flow cytometry (cell phenotype), karyotyping (GTG banding), functional assays (colony forming units analysis, multilineage differentiation assay). Bone defect treatment with bone equivalent application was fully completed in 39 combat-injured with 42 defects. New bone formation was assessed by the radiographic examination. Results: Casualties were included in a treatment program an average of 10.1 months after injury, provided the ineffectiveness of conventional surgery methods. All cell type cultures had a normal karyotype and appropriate phenotype, differentiation potential and functional properties, ~30% colony forming units frequency and hadn’t any signs of cell senescence. The fluorescein diacetate/propidium iodide combined staining and histology analysis of graft samples before transplantation showed their regular seeding with viable cells. Pathomorphological analysis of bone equivalent specimens 3–6 months post-op revealed the active remodeling processes and immature bone tissue formation. Bone defect restoration was observed 5–6 months post-op. Conclusion: The developed biotechnology of living three-dimensional tissue-engineered bone equivalent transplantation with overall effectiveness 90.4% allows restoring the bone integrity, forming new bone tissue in a site of bone defect, and significantly reducing the rehabilitation period of a patient

    Comparative Analysis of the Different Dyes' Potential to Assess Human Normal and Cancer Cell Viability in Vitro under Different D / H Ratios in a Culture Medium

    No full text
    In this study, using new approach (laser diffraction + biological dyes), we have demonstrated the decrease of cells viability in vitro in the deuterated growth medium, whereas in the deuterium-depleted medium, there was an increase of cell viability. We have also found that not all dyes are equally sensitive to the D/H ratios in the culture medium (system) as well as to the different cell types (cancer vs normal cells). © 2020 I. A. Zlatskiy et al
    corecore