3 research outputs found

    Role of gonadal hormones in programming developmental changes in thymopoietic efficiency and sexual diergism in thymopoiesis

    No full text
    There is a growing body of evidence indicating the important role of the neonatal steroid milieu in programming sexually diergic changes in thymopoietic efficiency, which in rodents occur around puberty and lead to a substantial phenotypic and functional remodeling of the peripheral T-cell compartment. This in turn leads to an alteration in the susceptibility to infection and various immunologically mediated pathologies. Our laboratory has explored interdependence in the programming and development of the hypothalamo-pituitary-gonadal axis and thymus using experimental model of neonatal androgenization. We have outlined critical points in the complex process of T-cell development depending on neonatal androgen imprinting and the peripheral outcome of these changes and have pointed to underlying mechanisms. Our research has particularly contributed to an understanding of the putative role of changes in catecholamine-mediated communications in the thymopoietic alterations in adult neonatally androgenized rats

    End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology

    No full text
    Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases
    corecore