4 research outputs found

    Nanometric TiO 2 as NBBs for functional organic-inorganic hybrids with efficient interfacial charge transfer

    No full text
    International audienceThe purpose of this work is to establish a fabrication method for new electronic materials: organic-inorganic p-MAPTMS / titanium-oxo-alkoxy hybrids. The size-selected 5.2-nm TiO 2 nanoparticles (Nano Building Blocks-NBB) are generated in a sol-gel reactor with turbulent fluids micromixing. The surface exchange between propoxy and MAPTMS groups under vacuum pumping results in a stable nanoparticulate precursor available for 2-photon laser polymerisation. The hybrids demonstrate quantum yield of photoinduced charges separation 6 % and can steadily trap photoinduced electrons at number density of 6% Ti atoms. The materials are suitable for 3D-microstructuring

    Luminescence properties of pHEMA-TiO2TiO_2 gels based hybrids materials

    No full text
    International audiencePhotoluminescence (PL) of photochromic pHEMA-TiO2 gels-based hybrids was studied by means of time- and energy-resolved spectroscopy at temperatures between 300 K and 10 K. The PL band at 485 nm is assigned to S0←T1 transition of methoxyphenol (organic molecule added to the commercial monomer hydroxyethyl methacrylate, HEMA and used as an inhibitor of spontaneous polymerisation) in the polymer environment, while the PL band at 600 nm is assigned to the self-trapped exciton onto octahedral TiO6 site of the inorganic component. The mechanisms of the excited states population are discussed. In particular it is shown that both singlet-triplet energy transfer in methoxyphenol and methoxyphenol–TiO2 charge transfer are strongly affected by the material composition and temperature. The hypothesis about the photoexcited holes annihilation with the trapped electrons is confirmed to be one of main mechanisms limiting the Ti3+ centres concentration
    corecore