5 research outputs found

    Multilayered Ecosystem of the Cultural Landscape of Onega

    Get PDF
    publishedVersio

    Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments

    No full text
    Wildfire is a threat for many boreal ecosystems and induces deep modifications in organic horizons. In this paper, we have considered fire-induced changes to the organic horizon properties. The effect of fire was studied by using a forest litter burning experiment. Sample heating was performed in the lab at fixed temperatures (200, 300 and 500 °C), on a set of O horizons developed under pine (Flavocetraria-Pinetum association) and spruce (Piceetum hylocomium splendens association) forest litters. Litters were analyzed in terms of pH, specific electrical conductivity, specific surface area, total carbon (Ctot) and nitrogen (Ntot) content, water-soluble carbon and nitrogen, δ13C and δ15N stable isotope analysis and 13C NMR spectroscopy. The mean pH values increased from ~5 to ~8.2 with an increase in the influence of temperature. The specific electrical conductivity and specific surface area properties increased as well from ~255 to ~432 and from 0.42 to 1.84, respectively. Ctot and Ntot decreased, but at the same time the inorganic carbon content increased. The aromaticity of organic matter after the fire increased. The results of the present study show that organic horizons are changed by wildfire and this discussion made it clear to help with the understanding how fire affects organic matter

    Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments

    No full text
    Wildfire is a threat for many boreal ecosystems and induces deep modifications in organic horizons. In this paper, we have considered fire-induced changes to the organic horizon properties. The effect of fire was studied by using a forest litter burning experiment. Sample heating was performed in the lab at fixed temperatures (200, 300 and 500 °C), on a set of O horizons developed under pine (Flavocetraria-Pinetum association) and spruce (Piceetum hylocomium splendens association) forest litters. Litters were analyzed in terms of pH, specific electrical conductivity, specific surface area, total carbon (Ctot) and nitrogen (Ntot) content, water-soluble carbon and nitrogen, δ13C and δ15N stable isotope analysis and 13C NMR spectroscopy. The mean pH values increased from ~5 to ~8.2 with an increase in the influence of temperature. The specific electrical conductivity and specific surface area properties increased as well from ~255 to ~432 and from 0.42 to 1.84, respectively. Ctot and Ntot decreased, but at the same time the inorganic carbon content increased. The aromaticity of organic matter after the fire increased. The results of the present study show that organic horizons are changed by wildfire and this discussion made it clear to help with the understanding how fire affects organic matter

    Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes

    No full text
    Fires are a naturally cyclical factor regulating ecosystems’ function and forming new postfire ecosystems. Peat soils are unique archives that store information about ecological and climatic changes and the history of past fires during the Holocene. The paper presents a reconstruction of the dynamics of fires in the subzone of the middle taiga of Western Siberia in the Holocene. Data on fires were obtained based on the results of a study of the content of macroscopic coal particles and radiocarbon dating. The effect of fires on soil organic matter (SOM) was estimated using 13C NMR spectroscopy and the content of polyaromatic hydrocarbons (PAHs). It is shown that throughout the Holocene, the peatlands studied were prone to fires. The conducted analyses show that the maximum content of charcoal particles is observed in the Atlantic (~9100–5800 cal. B.P.) and Subatlantic (~3100 cal. B.P. to the present) periods. The high correlation dependence of the content of coals with the content of PAHs (r = 0.56, p p < 0.05) in peat horizons is shown, which can characterize these parameters as a reliable marker of pyrogenesis

    Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas

    No full text
    The geochemical variations of magmas across and along supra-subduction zones (SSZ) have been commonly attributed to profound changes in the phase and chemical compositions of the mantle source and subduction-derived melt and fluid fluxes, as well as the physical parameters (e.g. depth, temperature, oxygen fugacity etc) of slab dehydration, mineral breakdown and melting. Here we test the variability of the Late Quaternary primitive magmas in the southern and northern parts of the meridionally oriented Eastern Volcanic Belt (EVB) of Kamchatka, with a slab depth varying from 60 to 160 km. Eight high-Mg (Mg# > 60 mol%) basalts were characterized for major, trace and platinum-group element (PGE) abundances, as well as the compositions of olivine phenocrysts and olivine-hosted spinel inclusions. The basalts in our study are geochemically typical of SSZ magmas and contain similar liquidus assemblages of forsteritic olivine (Mg# 78–92 mol%), low-Ti Cr-spinel and clinopyroxene. Although the absolute abundances of major and trace elements, and their ratios, in the basalts fluctuate to some extent, the observed variability cannot be correlated with any of considered parameters in the geometry of the Kamchatka SSZ and conditions of melting. This unexpected result led to the evaluation of the platinum-group element (PGE) systematics against the lithophile and chalcophile trace element geochemistry and the compositions of phenocrysts. Total whole-rock PGE content varies from 2.3 to 11.7 ppb, whereas the normalized PGE concentration patterns are typical for supra-subduction zones magmas and broadly similar in all studied samples. They are enriched in Rh, Pd and Pt relative to mid-ocean ridge basalts (MORB) and have nearly identical concentrations of Ir-group PGE. The only parameter that correlates well with PGE contents is the average Mg# of olivine phenocrysts from 84 to 90.3 mol%. This is interpreted to result from minor cryptic fractionation of sulfide melt, together with primitive olivine, in low-to-mid crustal conditions. Negative Ru anomalies on chondrite-normalized diagrams correspond to the Fe2+/Fe3+ ratios in spinel (a proxy for magma redox conditions), which reflects a replacement of monosulfide solid solution by laurite in the mantle wedge during oxidation
    corecore