12 research outputs found

    Structural elucidation of the O-antigen polysaccharide from Escherichia coli O125ac and biosynthetic aspects thereof

    Get PDF
    Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned H-1 and C-13 NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: -> 4)[beta-d-Galp-(1 -> 3)]-beta-d-GalpNAc-(1 -> 2)-alpha-d-Manp-(1 -> 3)-alpha-l-Fucp-(1 -> 3)-alpha-d-GalpNAc-(1 ->, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by H-1 and C-13 NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup

    CarbBuilder: an adjustable tool for building 3D molecular structures of carbohydrates for molecular simulation.

    Get PDF
    CarbBuilder is a software tool for building 3D structures of carbohydrates, which are the most structurally varied of all molecular classes. CarbBuilder was designed with the dual aims of portability and adaptability, using an iterative software development approach. CarbBuilder employs a simple algorithm, using heuristics based upon experimental data to con- vert a primary structure description of a carbohydrate molecule into a three-dimensional structure file. This straightforward approach means that CarbBuilder can be easily adapted: users can add additional monosaccharide building blocks or alter the conformational defaults to suit specific requirements. The output carbohydrate structure can be used for subsequent molecular simulation investigations. CarbBuilder is freely available and portable: it is a text-based stand-alone program that can run on Windows, Linux and MacOS X systems without installation

    Elucidation of the O-antigen structure of Escherichia coli O93 and characterization of its biosynthetic genes

    Get PDF
    The structure of the O-antigen from the international reference strain Escherichia coli O93:-:H16 has been determined. A nonrandom modal chain-length distribution was observed for the lipopolysaccharide, a pattern which is typical when long O-specific polysaccharides are expressed. By a combination of (i) bioinformatics information on the gene cluster related to O-antigen synthesis including putative function on glycosyl transferases, (ii) the magnitude of NMR coupling constants of anomeric protons, and (iii) unassigned 2D H-1, C-13-HSQC, and H-1,H-1-TOCSY NMR spectra it was possible to efficiently elucidate the structure of the carbohydrate polymer in an automated fashion using the computer program CASPER. The polysaccharide also carries O-acetyl groups and their locations were determined by 2D NMR experiments showing that similar to 1/2 of the population was 2,6-di-O-acetylated, similar to 1/4 was 2-O-acetylated, whereas similar to 1/4 did not carry O-acetyl group(s) in the 3-O-substituted mannosyl residue of the repeating unit. The structure of the tetrasaccharide repeating unit of the O-antigen is given by: -> 2)-beta-D-Manp-(1 -> 3)-beta-D-Manp2Ac6Ac-(1 -> 4)-beta-D-GlcpA-(1 -> 3)-alpha-D-GlcpNAc-(1 ->, which should also be the biological repeating unit and it shares structural elements with capsular polysaccharides from E. coli K84 and K50. The structure of the acidic O-specific polysaccharide from Cellulophaga baltica strain NN015840(T) differs to that of the O-antigen from E. coli O93 by lacking the O-acetyl group at O6 of the O-acetylated mannosyl residue

    Molecular Dynamics Simulations of E. Coli Lipoplysacharide Bilayers

    Get PDF

    Exploration of conformational flexibility and hydrogen bonding of xylosides in different solvents, as a model system for enzyme active site interactions

    No full text
    The predominantly populated conformation of carbohydrates in solution does not necessarily represent the biologically active species; rather, any conformer accessible without too large an energy penalty may be present in a biological pathway. Thus, the conformational preferences of a naphthyl xyloside, which initiates in vivo synthesis of antiproliferative glycosaminoglycans, have been studied by using NMR spectroscopy in a variety of solvents. Equilibria comprising the conformations C-4(1), S-2(0) and C-1(4) were found, with a strong dependence on the hydrogen bonding ability of the solvent. Studies of fluorinated analogues revealed a direct hydrogen bond from the hydroxyl group at C2 to the fluorine atom at C4 by a (1h)J(F4,HO2) coupling. Hydrogen bond directionality was further established via comparisons of fluorinated levoglucosan molecules

    Chair interconversion and reactivity of mannuronic acid esters

    No full text
    Mannopyranosyluronic acids display a very unusual conformation behavior in that they often prefer to adopt a C-1(4) chair conformation. They are endowed with a strikingly high reactivity when used in a glycosylation reaction as a glycosyl donor. To investigate the unusual conformational behavior a series of mannuronic acid ester derivatives, comprising anomeric triflate species and O-methyl glycosides, was examined by dynamic NMR experiments, through lineshape analysis of H-1 and F-19 NMR spectra at various temperatures from -80 degrees C to 0 degrees C. Exchange rates between C-4(1) and C-1(4) chair conformations were found to depend on the electronic properties and the size of the C2 substituent (F, N-3 or OBn) and the aglycon, with higher exchange rates for the glycosyl triflates and smaller C2 substituents. Low temperature F-19 exchange spectroscopy experiments showed that the covalently bound anomeric triflates did not exchange with free triflate species present in the reaction mixture. To relate the conformational behavior of the intermediate triflates to their reactivity in a glycosylation reaction, their relative reactivity was determined via competition reactions monitored by H-1 NMR spectroscopy at low temperature. The 2-O-benzyl ether compound was found to be most reactive whereas the 2-fluoro compound - the most flexible of the studied compounds - was least reactive. Whereas the ring-flip of the mannuronic acids is important for the enhanced reactivity of the donors, the rate of the ring-flip has little influence on the relative reactivity

    Structural studies on lipopolysaccharides of serologically non-typable strains of helicobacter pylori, af1 and 007, expressing lewis antigenic determinants

    No full text
    In contrast to other Helicobacter pylori strains, which have serologically detectable Lewis(x) (Le(x)) and Lewis(y) (Le(y)) antigenic determinants in the O-specific polysaccharide chains of the lipopolysaccharides, H. pylori AF1 and 007 were non-typable with anti-Le(x) and anti-Le(y) antibodies. The carbohydrate portions of the lipopolysaccharides were liberated by mild acid hydrolysis and subsequently studied by sugar and methylation analyses, H-1-NMR spectroscopy and electrospray ionization-mass spectrometry. Compared with each other, and with lipopolysaccharides of strains studied previously, the lipopolysaccharides of both AF1 and 007 showed similarities, but also differences, in the structures of the core region and O-specific polysaccharide chains. The O-specific polysaccharide chains of both strains consisted of a short or long polyfucosylated poly-N-acetyl-beta-lactosamine chains, which were distinguished from those of other strains by a high degree of fucosylation producing a polymeric Le(x) chain terminating with Le(x) or Le(y) units: [GRAPHICS] where n = 0 or 1 in strain AF1 and 0 in strain 007, m = 0-2, 6-7 in strain AF1 and m = 0-2, 6-7 or approximate to 40 in strain 007, the medium-size species being predominant. Therefore, compared with other strains, the lack of reactivity of lipopolysaccharide of H. pylori AF1 and 007 with anti-Le(x) and anti-Le(y) may reflect the presence of a polymeric Le(x) chain and has important implications for serological and pathogenesis studies. As the substitution pattern of a D-glycero-D-manno-heptose residue in the outer core varied in the two strains, and an extended DD-heptan chain was present in some lipopolysaccharide species but not in others, this region was less conservative than the inner core region. The inner core L-glycero-D-manno-heptose region of both strains carried a 2-aminoethyl phosphate group, rather than a phosphate group, as reported previously for other H. pylori strains

    Structural studies on lipopolysaccharides of serologically non-typable strains of helicobacter pylori, af1 and 007, expressing lewis antigenic determinants

    No full text
    In contrast to other Helicobacter pylori strains, which have serologically detectable Lewis(x) (Le(x)) and Lewis(y) (Le(y)) antigenic determinants in the O-specific polysaccharide chains of the lipopolysaccharides, H. pylori AF1 and 007 were non-typable with anti-Le(x) and anti-Le(y) antibodies. The carbohydrate portions of the lipopolysaccharides were liberated by mild acid hydrolysis and subsequently studied by sugar and methylation analyses, H-1-NMR spectroscopy and electrospray ionization-mass spectrometry. Compared with each other, and with lipopolysaccharides of strains studied previously, the lipopolysaccharides of both AF1 and 007 showed similarities, but also differences, in the structures of the core region and O-specific polysaccharide chains. The O-specific polysaccharide chains of both strains consisted of a short or long polyfucosylated poly-N-acetyl-beta-lactosamine chains, which were distinguished from those of other strains by a high degree of fucosylation producing a polymeric Le(x) chain terminating with Le(x) or Le(y) units: [GRAPHICS] where n = 0 or 1 in strain AF1 and 0 in strain 007, m = 0-2, 6-7 in strain AF1 and m = 0-2, 6-7 or approximate to 40 in strain 007, the medium-size species being predominant. Therefore, compared with other strains, the lack of reactivity of lipopolysaccharide of H. pylori AF1 and 007 with anti-Le(x) and anti-Le(y) may reflect the presence of a polymeric Le(x) chain and has important implications for serological and pathogenesis studies. As the substitution pattern of a D-glycero-D-manno-heptose residue in the outer core varied in the two strains, and an extended DD-heptan chain was present in some lipopolysaccharide species but not in others, this region was less conservative than the inner core region. The inner core L-glycero-D-manno-heptose region of both strains carried a 2-aminoethyl phosphate group, rather than a phosphate group, as reported previously for other H. pylori strains
    corecore