34 research outputs found

    Millimeter Wave Scattering from Neutral and Charged Water Droplets

    Full text link
    We investigated 94GHz millimeter wave (MMW) scattering from neutral and charged water mist produced in the laboratory with an ultrasonic atomizer. Diffusion charging of the mist was accomplished with a negative ion generator (NIG). We observed increased forward and backscattering of MMW from charged mist, as compared to MMW scattering from an uncharged mist. In order to interpret the experimental results, we developed a model based on classical electrodynamics theory of scattering from a dielectric sphere with diffusion-deposited mobile surface charge. In this approach, scattering and extinction cross-sections are calculated for a charged Rayleigh particle with effective dielectric constant consisting of the volume dielectric function of the neutral sphere and surface dielectric function due to the oscillation of the surface charge in the presence of applied electric field. For small droplets with (radius smaller than 100nm), this model predicts increased MMW scattering from charged mist, which is qualitatively consistent with the experimental observations. The objective of this work is to develop indirect remote sensing of radioactive gases via their charging action on atmospheric humid air.Comment: 18 pages, 8 figure

    Quantitative MRI Measurement of Binder Distributions in Green-State Ceramics

    Get PDF
    Development of reliable and improved structural ceramics for advanced heat engines and other applications requires process diagnostics and materials evaluation from powder preparation to green-body forming to final sintering. Injection molding is a promising processing method being developed for mass production of complex-shaped heat engine components such as turbochargers (rotors and stator vanes) and engine valves. Major processing steps in injection-molded ceramic manufacturing include preparation of ceramic powders and organic binders, mixing, molding, binder removal, sintering, and finishing [1]. While materials evaluation and diagnostics are needed throughout the process, it is particularly important to evaluate the distributions of binders/plasticizers in as-molded green bodies [2]. Poor distribution of these organics in a green body can lead to a final part that is defective or that has poor mechanical properties after it is sintered

    Near-Field Analysis of Rectangular Waveguide Probes Used for Imaging

    Get PDF
    Near-field microwave imaging of composite structures has received considerable attention recently. The success achieved on the experimental level motivated the development of a theoretical model to describe the high quality images obtained using near-field microwave imaging [1–4]. This theoretical model will also help in building an intuitive understanding of the behavior of the fields inside dielectric materials in the near-field of an open-ended rectangular waveguide probe. A near-field microwave image is the result of several factors such as probe type (example rectangular waveguide, circular waveguide or coaxial line), field properties (i.e. main lobe, sidelobes and half power beam width, etc.), geometrical and physical properties of both the defect and the material under inspection. Thus, in order to characterize a defect, the effect of all non-defect factors needs to be taken out of an image. One of the dominant non-defect factors which influences an image significantly is the radiator field properties. Thus, it is essential to formulate the properties of the fields radiating out of an open-ended rectangular waveguide in its near-field. This knowledge will aid in formulating the forward problem when imaging a defect, and will be used to solve the inverse problem for obtaining defect properties. In this paper fields radiating out of an open-ended rectangular waveguide, into an infinite half-space of a dielectric material, are calculated and used to explain some of the features observed in experimental near-field microwave images

    Waveguide-Based Ultrasonic and Far-Field Electromagnetic Sensors for Downhole Reservoir Characterization.

    Get PDF
    This report summarizes the first year research and development effort leading to development of high-temperature sensors for enhanced geothermal systems. It covers evaluation of ultrasonic and electromagnetic (EM) techniques applied to temperature measurement and flow characterization. On temperature measurement, we have evaluated both microwave radiometry and ultrasonic techniques for temperature gradient and profile measurements. Different antenna designs are evaluated and array loop antenna design is selected for further development. We have also evaluated ultrasonic techniques for total flow characterization, which includes using speed of sound to determine flow temperature, measuring acoustic impedance to estimate fluid density, and using cross-correlation technique to determine the mass flow rate. Method to estimate the flow enthalpy is briefly discussed. At end, the need and proposed techniques to characterize the porosity and permeability of a hot dry rock resource are presented
    corecore