6 research outputs found

    Discovery of sterically-hindered phenol compounds with potent cytoprotective activities against ox-LDL–induced retinal pigment epithelial cell death as a potential pharmacotherapy

    No full text
    Late-stage dry age-related macular degeneration (AMD) or geographic atrophy (GA) is an irreversible blinding condition characterized by degeneration of retinal pigment epithelium (RPE) and the associated photoreceptors. Clinical and genetic evidence supports a role for dysfunctional lipid processing and accumulation of harmful oxidized lipids in the pathogenesis of GA. Using an oxidized low-density lipoprotein (ox-LDL)-induced RPE death assay, we screened and identified sterically-hindered phenol compounds with potent protective activities for RPE. The phenol-containing PPARγ agonist, troglitazone, protected against ox-LDL–induced RPE cell death, whereas other more potent PPARγ agonists did not protect RPE cells. Knockdown of PPARγ did not affect the protective activity of troglitazone in RPE, confirming the protective function is not due to the thiazolidine (TZD) group of troglitazone. Prototypical hindered phenol trolox and its analogs potently protected against ox-LDL–induced RPE cell death whereas potent antioxidants without the phenol group failed to protect RPE. Hindered phenols preserved lysosomal integrity against ox-LDL–induced damage and FITC-labeled trolox was localized to the lysosomes in RPE cells. Analogs of trolox inhibited reactive oxygen species (ROS) formation induced by ox-LDL uptake in a dose-dependent fashion and were effective at sub-micromolar concentrations. Treatment with trolox analog 2,2,5,7,8-pentamethyl-6-chromanol (PMC) significantly induced the expression of the lysosomal protein NPC-1 and reduced intracellular cholesterol level upon ox-LDL uptake. Our data indicate that the lysosomal-localized hindered phenols are uniquely potent in protecting the RPE against the toxic effects of ox-LDL, and may represent a novel pharmacotherapy to preserve the vision in patients with GA

    Prolonged intraocular residence and retinal tissue distribution of a fourth-generation compstatin-based C3 inhibitor in non-human primates

    No full text
    Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among the elderly population. Genetic studies in susceptible individuals have linked this ocular disease to deregulated complement activity that culminates in increased C3 turnover, retinal inflammation and photoreceptor loss. Therapeutic targeting of C3 has therefore emerged as a promising strategy for broadly intercepting the detrimental proinflammatory consequences of complement activation in the retinal tissue. In this regard, a PEGylated second-generation derivative of the compstatin family of C3-targeted inhibitors is currently in late-stage clinical development as a treatment option for geographic atrophy, an advanced form of AMD which lacks approved therapy. While efficacy has been strongly suggested in phase 2 clinical trials, crucial aspects still remain to be defined with regard to the ocular bioavailability, tissue distribution and residence, and dosing frequency of such inhibitors in AMD patients. Here we report the intraocular distribution and pharmacokinetic profile of the fourth-generation compstatin analog, Cp40-KKK in cynomolgus monkeys following a single intravitreal injection. Using a sensitive surface plasmon resonance (SPR)-based competition assay and ELISA, we have quantified both the amount of inhibitor and the concentration of C3 retained in the vitreous of Cp40-KKK-injected animals. Cp40-KKK displays prolonged intraocular residence, being detected at C3-saturating levels for over 3 months after a single intravitreal injection. Moreover, we have probed the distribution of Cp40-KKK within the ocular tissue by means of immunohistochemistry and highly specific anti-Cp40-KKK antibodies. Both C3 and Cp40-KKK were detected in the retinal tissue of inhibitor-injected animals, with prominent co-localization in the choroid one-month post intravitreal injection. These results attest to the high retinal tissue penetrance and target-driven distribution of Cp40-KKK. Given its subnanomolar binding affinity and prolonged ocular residence, Cp40-KKK constitutes a promising drug candidate for ocular pathologies underpinned by deregulated C3 activation
    corecore