4,792 research outputs found

    Search for quantum criticality in a ferromagnetic system UNi1-xCoxSi2

    Full text link
    Polycrystalline samples of the isostructural alloys UNi1-xCoxSi2 (0 <= x <= 1) were studied by means of x-ray powder diffraction, magnetization, electrical resistivity and specific heat measurements, at temperatures down to 2 K and in magnetic fields up to 5 T. The experimental data revealed an evolution from strongly anisotropic ferromagnetism with pronounced Kondo effect, observed for the alloys with x < 0.98 and being gradually suppressed with rising Co-content, to spin-glass-like states with dominant spin fluctuations, seen for the sample with x = 0.98. Extrapolation of the value of TC(x) yields a critical concentration xc = 1, at which the magnetic ordering entirely disappears. This finding is in line with preliminary data collected for stoichiometric UCoSi2.Comment: to appear in Phys. Rev.

    Large Miscibility Gap in the Ba(Mn_xFe_{1-x})2As2 System

    Full text link
    The compounds BaMn2As2 and BaFe2As2 both crystallize in the body-centered-tetragonal ThCr2Si2-type (122-type) structure at room temperature but exhibit quite different unit cell volumes and very different magnetic and electronic transport properties. Evidently reflecting these disparities, we have discovered a large miscibility gap in the system Ba(Mn_xFe_{1-x})2As2. Rietveld refinements of powder x-ray diffraction (XRD) measurements on samples slow-cooled from 1000 C to room temperature (RT) reveal a two-phase mixture of BaMn2As2 and Ba(Mn_{0.12}Fe_{0.88})2As2 phases together with impurity phases for x = 0.2, 0.4, 0.5, 0.6 and 0.8. We infer that there exists a miscibility gap in this system at 300 K with composition limits 0.12 < x < 1. For samples quenched from 1000 C to 77 K, the refinements of RT XRD data indicate that the miscibility gap at RT narrows at 1000 C to 0.2 < x < 0.8. Samples with x=0.4, 0.5 and 0.6 quenched from 1100-1400 C to 77 K contain a single 122-type phase together with significant amounts of Fe_{1-x}Mn_xAs and FeAs2 impurity phases. These results indicate that the system is not a pseudo-binary system over the whole composition range and that the 122-type phase has a significant homogeneity range at these temperatures. Magnetic susceptibility, electrical resistivity and heat capacity measurements versus temperature of the single-phase quenched polycrystalline samples with x = 0.2 and 0.8 and for lightly doped BaMn2As2 crystals are reported.Comment: 14 pages, 16 figures, 3 tables; published versio

    Energetics of critical oscillators in active bacterial baths

    Get PDF
    We investigate the nonequilibrium energetics near a critical point of a non-linear oscillator immersed in an active bacterial bath. At the critical point, we reveal a scaling exponent of the average power exerted by a constant non-conservative torque 〈W‧ 〉 ∼ (Da/τ)1/4, where Da is the effective diffusivity and τ the correlation time of the bacterial bath described by a Gaussian colored noise. Other features that we investigate are the average stationary power and the variance of the work both below and above the saddle-node bifurcation. Above the bifurcation, the average power attains an optimal, minimum value for finite τ that is below its zero-temperature limit. Furthermore, we reveal a finite-time uncertainty relation for active matter which leads to values of the Fano factor of the work that can be below 2kBTeff, with Teff the effective temperature of the oscillator in the bacterial bath. We analyze different Markovian approximations to describe the nonequilibrium stationary state of the system. Finally, we illustrate our results in the experimental context by considering the example of driven colloidal particles in periodic optical potentials within an E. Coli bacterial bath

    Was the Cosmic Web of Protogalactic Material Permeated by Lobes of Radio Galaxies During the Quasar Era?

    Get PDF
    Evidence for extended active lifetimes (> 10^8 yr) for radio galaxies implies that many large radio lobes were produced during the `quasar era', 1.5 < z < 3, when the comoving density of radio sources was 2 -- 3 dex higher than the present level. However, inverse Compton losses against the intense microwave background substantially reduce the ages and numbers of sources that are detected in flux-limited surveys. The realization that the galaxy forming material in those epochs was concentrated in filaments occupying a small fraction of the total volume then leads to the conclusion that radio lobes permeated much of the volume occupied by the protogalactic material during that era. The sustained overpressure in these extended lobes is likely to have played an important role in triggering the high inferred rate of galaxy formation at z > 1.5 and in the magnetization of the cosmic network of filaments.Comment: 5 pages, 0 figures, submitted to ApJ Letters; uses emulateapj

    Scattering of Light by Capillary Waves in Critical Wetting Interfaces

    Get PDF

    Comparison of performance parameters of poly(3,4 ethylenedioxythiophene) (PEDOT) based electrochromic device on glass with and without counter electrode

    Get PDF
    Conjugated polymers are promising materials for electrochromic device technology. Aqueous dispersions of poly(3,4-ethylenedioxythiophene)-(PEDOT) were spin coated onto transparent conducting oxide (TCO) coated glass substrates. A seven-layer electrochromic device was fabricated with the following configuration: glass/transparent conducting oxide (TCO)/PEDOT (main electrochromic layer)/gel electrolyte/prussian blue (counter electrode)/TCO/glass. The device fabricated with counter electrode (Prussian blue) showed a contrast of 18% and without counter electrode showed visible contrast of 5% at 632 nm at a voltage of 1·9 V. The comparison of the device is done in terms of the colouration efficiency of the devices with and without counter electrode

    Hsp90 as a Gatekeeper of Tumor Angiogenesis: Clinical Promise and Potential Pitfalls

    Get PDF
    Tumor vascularization is an essential modulator of early tumor growth, progression, and therapeutic outcome. Although antiangiogenic treatments appear promising, intrinsic and acquired tumor resistance contributes to treatment failure. Clinical inhibition of the molecular chaperone heat shock protein 90 (Hsp90) provides an opportunity to target multiple aspects of this signaling resiliency, which may elicit more robust and enduring tumor repression relative to effects elicited by specifically targeted agents. This review highlights several primary effectors of angiogenesis modulated by Hsp90 and describes the clinical challenges posed by the redundant circuitry of these pathways. The four main topics addressed include (1) Hsp90-mediated regulation of HIF/VEGF signaling, (2) chaperone-dependent regulation of HIF-independent VEGF-mediated angiogenesis, (3) Hsp90-dependent targeting of key proangiogenic receptor tyrosine kinases and modulation of drug resistance, and (4) consideration of factors such as tumor microenvironment that pose several challenges for the clinical efficacy of anti-angiogenic therapy and Hsp90-targeted strategies

    Magnetic Behavior in RRhX (R = rare earths; X=B, C) Compounds

    Full text link
    We report on the magnetic behavior of RRhB (R = La, Ce, Pr, Nd, Gd, Tb and Tm) and RRhC (R = La, Ce, Pr and Gd) compounds crystallizing in the cubic perovskite type structure with space group Pm3m. The heat capacity data on Pauli-paramagnetic LaRhB and LaRhC indicate a high frequency vibrating motion of boron and carbon atoms in the unit cell. Ce is in -like nonmagnetic state in both the compounds. Pr compounds show a dominant crystal field effect with a nonmagnetic singlet ground state in PrRhB and a nonmagnetic quadrupolar doublet in PrRhC. Compounds with other rare earths order ferromagnetically at low temperatures except TmRhB in which the zero field evolution of magnetic interactions is relatively more complicated. The electrical resistivity of GdRhB decreases with increasing temperature in the paramagnetic state in the vicinity of T, which is rarely seen in ferromagnets. The behavior is discussed to be arising due to the short range spin fluctuation and a possible contribution from Fermi surface geometry.Comment: 14 Figs and a text fil
    corecore