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Abstract: The intensity distribution in scattered light, due to scattering by
capillary waves in critical wetting interfaces, is derived. It is seen that the
intensity is confined within an angle <§?> ~ ¢! ~t1*?* around the specular
direction, o being the surface tension of the interface. The quantity <¢*> is
seen to be independent of the thickness of the layer. A temporal measurement,
measuring the temporal rate of change of scattered intensity in any direction is
seen to probe the dispersion relation of the capillary waves and is hence very
sensitive to the layer thickness, for very thin layers.
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1. Introduction

Wetting phenomenon, near the critical point of a binary liquid mixture is an
interesting phenomenon where a heavier liquid resides on top of a lighter liquid.
The observation of wetting has been reported in many systems (Cahn 1977,
Moldover and Cahn 1980, Vani et al 1983). Observations on the effect of
hydrodynamic instabilities in the wetting layers has been reported by us
(Chatterjee et al 1985). Whenever the cell dimensions are small enough such that
hydrodynamic instabilities are absent, an important role is played by the surface
capillary waves in determining the thickness of the wetting layer. Chatterjee and
Gopal (1988) have discussed the effect of the capillary waves on the thickness of
the wetting layer and in particular, have shown that because of the influence of
the capillary waves, the thickness of the wetting layer goes to zero as one
approaches tha critical point, provided tha forces are of long range type. For
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Cahn-Hilliard type short range forces, the thickness has a complicated dependence
As has been shown (Chatterjee et al 1985) stability of the wetting layer is

very critically decided by the dispersion relation of the capillary waves. In the
above paper, the authors considered the well known dispersion relation

w3(k)=(1/p)[(g4p+ck®)k tanh(kl)]
I being the thickness of the wetting layer. This shows that
w?(k) ~ (o/p)k¢!

for very thin layers and leads to a free energy contribution Foapuary ~ —1-®
where x changes from I in extreme low t limit.to 1/2 for higher t values. This
particular behaviour of Fepumary With respect to I is an important determining factor
as far as the dependence of | on t is concemed. Hence, we consider that the
single most important justification in favour of our ‘capillary wave’ model can be
obtained, if a direct evidence of the above dispersion relation can be found for the
surface ripples.

With this motivation in mind, we discuss the possibility of experimental
verification of the presence of capillary waves. We take light as the probe and
consider the scattering of light by capillary waves, which render the surface
irregular (Beckmann and Spizzichino 1963). We derive in the following, an
expression for the intensity of the reflected light from a wetting interface and show
that it follows a distinct scaling behaviour which may be verified experimentally.

We propose two experiments, in one of which a broad beam of light is
incident on the wetting interface and the reflected beam is converged using a lens
and then projected on a screen. The wetting surface being irregular, because of
displacements caused by capillary waves, the reflected beam will proceed in random
directions and hence the point of focus on the screen will broaden out into a patch
if the exposure time be large. In this case, the width of the patch follows a fixed
scaling behaviour. In the second experiment, we have a narrow beam of light
incident on a given spot in the wetting interface. The movement of the reflected
light on the screen is determined by the tilt of the surface. This gives the
behaviour of grad ¢£. The temporal changes of Grad £ depend on (K) dispersion
and hence explicitly on the thickness of the wetting layer and should follow the
behaviour derived in the following section. The temporal changes in the intensity
are related to the time evolution of the displacements of the surface ripples. We
show that this in both cases one studies the change in coherence properties of the
reflected light. In the first experiment, one studies the distortion of the wavefront
on reflection. In the second one, we take the temporal change in coherence for a
very narrow reflected beam of light.
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2. Theory

2a. Light scattering by capillary waves : static experiment

Figure 1 shows the wetting situation in a binary liquid mixture. L, and L, are
the two liquids and L,L, is the interface showing the bulk phase separation. A
thin wetting layer of L, forms on top of L and L,L, is the wetting interface.
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Figure I. Schematic diagram of the wetting phenomena.

We consider the distortion of the interface, due to capillary waves and the
scattering of a plane wave front of light by these distortions on the wetting
interface.
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Figure 2. Sketch of the scattering geometry.

The capillary waves at the surface are considered to be a random rougﬁ
surface in two dimensions. As shown in Figure 2, let a plane front be incident

on the Interface.



Scattering of light by capillary waves etc 279

Let sk, be the wave vector of the scattered light, with s(ss, s,, s,) being the
direction of scattering. Let sJ, s;, s, be the direction cosines for the specular

direction and £(x, y) be the elevation of the surface at any point x, y.
Then the intensity in any direction (s, sy, s,) is

1) =(ELA%) ({ €422 —x3)ed® (r = ya)et vIE(Ks, y2)~E(x, yo)1dxdy

where
X=Xy —Xgq
Y=Ys—Ys
(X1, Y1), (x4, ¥o) being points in the x, y plane.
with
E=Total energy incident on the surface.
A=2m/k,=wavelength of light
and

v=Kko(s—5,)
I'=Reflection coefficient of the surface

We know (¢, —£,) to be a zero mean random variable, whose distribution is
Gaussian. Then it can be shown,

ey (E1—Ea) > =e""C 41 —¢,)% D12 (6)
where { (£, —£,)2 ) is the average over all possible realisations of the interface. -
The integral in (1) is therefore,

Iva: o) =(ET®) (fedotrs — o5y —ya);*® (62 =600 D12 dxdy.

(7)
We now Fourier analyse,
£(x, y)= Zg(P' q)er(PB+av) (8)
Now, the displacement £(x, y) being real, we must have
£, Q=£&(—p, —9) : 9)
Also, we consider the Fourier components to be correlated as,
CEP 90EP, @ >=C | &p. @ 1°) 3p-p18@-9) . (10)

Using (8) to (10) one obtains, )
{|é1—¢£s l’>=2 &P, q) %) sin® {p(xy —xg)+4(y, “‘v"h)f (1)

»a
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To evaluate I(ve, v,) (Landau and Lifshitz 1959) we must now evaluate
< ' £ 1“'£ ] " >

From (11), we first calculate the thermal average for { | £&(p, q) [* >, for the
capillary waves which we now proceed to do.

2b, Calculation of thermal averages { | (p, q)1* ) :

To calculate the thermal averages { | £(p, q) [* ) we first obtain the expression
for the energy of the capillary waves.

Let us assume that a displacement &(r, t)=¢(k, t) cos (k.r) be created at
any point r=(x, y) on the interface, located at z=1. We know that the velocity

potential for the flow of the fluid, at any height z, is given by (Landau and
Lifshitz 1959),

é=4d(k, T) cosh kz (12)

s =v,=keé(k, t) sinh kz (13)
Now the z-component of the velocity at the surface is given by

d.()=¢(k, T)k sinh kI=a¢(k, t)/at (14)

d(k, t)=¢£(k, t)/(k sinh k) (15)

v, =k(1/k sinh kI)) sinh (kz)é(k,t) (16)
The kinetic energy is then given by,

§(p/2).v: dxdydz=(1/4'-)Ap£' (k, t)/(ktanhkl) (17)
A being the area of the surface.

Potential energy has a contribution both from the buoyancy term and the
surface tension term.

The contribution to the potential energy from the buoyancy term is the well
known gravitational energy.

(P.E)s=(1/2)g40 | £k, 1) ndy (18)

The contribution from the surface tension term is calculated from the product of
the increase in surface area and surface tension.
The surface area at any instant is given by,

“dxdy(1+£;+f:)m (19)
sy

The change in area,
(\aarcr/2)ces +2 (20)
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on substituting and simplifying yields,
(172) {2+ enixdy=A2 > ka+ke ke, ki~ K, =k (21)

kg ky

Thus the surface energy is,
(200 D+ | Eka, k) 2 22

The total energy of the system is given by *ddmg the terms in (17), (18) and (22),
which gives us,

H=A2 §1/2(gdp+ok3) | £(k) ;%' +(P/(k tanh kI)) | £(k) (s (23)

Comparing (23) with the expression for theinergy of a simple harmonic oscillator
and from the theorem of equipartition of energy, for a simple harmonic oscillator,
we find the dispersion relation to be

w*(k) =(1/£)(gdp + ok®)kth(kl) (23a)

(KE D=(P.E>=K,T/2 (24)
we have,

AL (k) 1* ) =(K5T/2)(gdp+ok?) (25)

2c. l(vg, vy) for capillary waves :
The quantities { | £(k)|® ) being known, we now substitute (25) in (11) to get

| é1—£s[® D=(kaT[8I'(2))(1/0) [K2ae/2 — (84p/20 In(gdp+ aK3,,))IR®

(26)
With R®=(X; —Xg)*+(Y;—Y,)* and Kna: being an upper cut off wave vector
for the capillary waves. As can be seen from (26), the quantity { (£, —£,) >* is
not determined by the height of the interface.

Thus we have from (26),
oxp (—Vy (81— £3)* )/2)=exp (—v a*R%/2)

where

a2 =(K»T/8I'(2))(1/0)[Knux— (84p/20) In ((gdp +0K3,0))] (26.1)
Thus, the integral in (7) can be easily written as,

I(Va, vy)=(A2m/a®) exp (—(v3 +vy)/2via®) (27)

The Gaussian nature of (27) shows that the intensity is maximum along the
specular direction and the intensity is broadened to a patch of size

Lvitvyr=2va" (28)
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or to an angle ¢ around the specular direction, such that
{sin%0 ) =2k%a? k% =2a? (29)

It is seen that a® is independent of the wavelength of light. This conclusion
is infact a result of the approximation { (£, —£5)® >~R® which always arises in
the low R limit. However, for R — oo, { (£, —£,)® ) — constant and this should
give rise to a k dependence in a®.

Thus if Fis the distance from the source to the screen, the size of the
patch 8X is given by,

(| 8X[2>=f2sin? ¢ )=2a%f* (30)
from the expression for a8,
a% = 1o == 1118 (31)

the size of the patch should scale as 1/t2*® which should be the result expected
from this static experiment, where a broad beam of light is focussed on the
wetting interface. As mentioned in the introduction, the average intensity profile
obtained above contains average over all realisations of the interface and hence
has no information atout the dynamics.

2d. Light scattering by capillary waves : dynamic experiment :

To obtain information about the dispersion relation of the capillary waves, a
dynamic experiment is required. If we note the temporal rate of change I(t) we

shall be studying the behaviour of £(x, y). This explicitly involves the dispersion
relation as we show below.

Differentiating eq. (2) with respect to time,
i®, y)=(E*) SS 0 %(xy —Xg)e8 (s —Ya)y® (62— Ea)el? (£,—Eq)dxdy
(32)

We consider the case along the specular direction i.e, v, =v, =0. This gives,
i(0, 0)=(Er/A=)1 \{ vi(, —m)es (6, — £)dxdy (33)

The integrand in (33) is a zero mean random variable, so that ¢ i(0,0) >=0.
However, the quantity l'(O, 0)% > can be easily estimated as follows.

We have seen from (26 and 26.1) the quantity in the exponent correlated
within R € r,, such that

(1/2)vgatry=1

or
r8=2/(via*) (34)
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Thus, over a blob of radius r,, we have
SS [(f:. - és)]d"dy ~ tfw(xx —Xgq) +2:u()'1 "Yt)]f:

where f', and §'1, are also random variables, correlated within the blob.
Thus for every blob,

<O [ —E1andp s> ~ [+ (> Trems

T0

The interface has N ~ A/r3 blobs. Hence from the' law of large numbers,
<0, 001 >=(ET/a*)*v;N<*
= (ET/A%)SvR(A/rQ)K £2 >+ €218
=(ET/A%)3v9A { £3) r
= 4(EI'/2*)*A €3 )](via*)

Now
CEI=CEIHCE Y= D ket (L &R 1P

which from (25) reads
k

=(ksT/p) Sm“k‘thkldk

[¢]

For kp.x/<<€1 one finds
2 Y~ (kaT/p)(Kmux /6

i.e, it follows I, increasing as t increases,
while for kumas! 5 1 We have t { (d,/k)*'®

@

4 {':>=(knT/P)(1/5)[k;.—(1/l“ S x® sech?xdx)]

]

i.e. there is a slow rise as | increases or as t increases.

Equation (37) shows that ¢ =y« A. Also {I)>«A. Hence for

(35)

(36)

(37)

(38)

(39)

(40)

effective

detection of ¢ /2> in the background of | one must have the ratio {imY1)e

large i.e. the size of the light beam must be small.

3. Effect due to finite thickness of the interface

The total dependence of ¢ I* > also contains the! reflectivity of the interface. In
this respect, the mode! of the interfacial thickness is necessary, to ascertain the
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reflectivity of the interface. We consider here the dielectric constant to vary accor-
ding to the Epstein model (Epstein 1930)

€(z)=(ey+¢5)/2+[(e3—€3)/2] th (2/d) (41)
where 2d is the intefacial thickness. It is immediately seen that «(z) - ¢, as
z —» o and €(z) > €5 as z »>— oo, The reflectivity in such a case is given by (8),

I'={[sh(mkd(n, —n,)/2)/sh(mkd(n, +ng)/2)]* (42)
It is seen that for 7kd/2 < I, I is approximated as,

T'=(ny —ng/ng+n,)*

~ I'gte? (43)
being decided by the difference of the refractive indices and being insensitive to
the interfacial thickness.

For mkd/2 > 1, on the other hand, the reflectivity follows,

I'=exp [—nakd(n, +n4)] (44)
being insensitive to the refractive index differences, but following the interfacial
thickness.

Now we know, d~ d,t~3'% which means that with decreasing t, the reflecti-
vity follows a decay,

I~ exp (—dot™/%/A). (45)

The magnitude of ¢ I* ) thus depends crucially upon the quantity knl. For all
practical purposes one must have ky, « I/d or ky! « 1/d 1, in order that an interface
can be defined. Hence equation (40) is the valid equation for all ranges. Also
if one performs experiments at t » 10-¢, in the visible range, one finds conditions
proper for the application of eq. (43).

Thus, in these cases, retaining only the t-dependent terms, one has,

CTi0,01% YA 1383 k3~ (1/1%) | x* sechixdx] (46)

[+]
where 8 ~ 0.33, y ~ 1.33, km ~ t1/% and | ~ 0.66.
Thus the first two factors in (44) give t*(#+#) ~ ¢3:83 on inserting the factor

[ -] in (44) one finds  1(0,0)]* ) to fall faster than t®*% as T, is approached,
owing to the faster variation of I-® term (~ t-2's) that ks (~t®)ast-»0.

Thus as the two terms become comparable ¢ (0,0)® > would abruptly vanish.

4. Conclusion

The motivation of the present paper is to explore the possibility of direct observation
of capillary waves in the interface of wetting layers. Their existence can be easily
“seen’ in the scattering of light by the interface of the wetting layers. In absence
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of the distortion of the interface, one would obtain a perfectly specular reflection,
maintaining the angle of incidence equal to the angle of reflection. The capillary
wave distortions, would cause departures from this specular condition. In contrast,
the scattered beam would be seen to arrive at angle 6, with respect to the specular
direction where {0)>=0 and {6® )=t=%. This scaling is seen to be determined
by the scaling laws of the surface temsion o=3t1'®® and 4p =st°*%, being
independent of the layer thickness. The dynamic experiment involving the

measurement of { {* ) is seen to be strongly t dependent as given by equations (38)
and (40). A combination of these twa simple experiments would unmistakably
establish the importance of capillary waves in determining the stability of
wetting layers. ;

Recently, Dieterich and Schack (1%7) have considered a case where the
interface is of mesoscopic nature i.e., the ifiterface cannot be considered by a waell
defined thickness and studied the caseiof specular reflection. The interplay of
capillary and the mesoscopic interfaces in teﬂectlwtv of surfaces promises to be
one of rich prospects.
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