11 research outputs found

    Oligo(p-phenylene-ethynylene)-derived super-Ď€-gelators with tunable emission and self-assembled polymorphic structures

    No full text
    Linear π-conjugated oligomers are known to form organogels through noncovalent interactions. Herein, we report the effect of π-repeat units on the gelation and morphological properties of three different oligo(p-phenylene-ethynylene)s: OPE3, OPE5, and OPE7. All of these molecules form fluorescent gels in nonpolar solvents at low critical gel concentrations, thereby resulting in a blue gel for OPE3, a green gel for OPE5, and a greenish yellow gel for OPE7. The molecule–molecule and molecule–substrate interactions in these OPEs are strongly influenced by the conjugation length of the molecules. Silicon wafer suppresses substrate–molecule interactions whereas a mica surface facilitates such interactions. At lower concentrations, OPE3 formed vesicular assemblies and OPE5 gave entangled fibers, whereas OPE7 resulted in spiral assemblies on a mica surface. At higher concentrations, OPE3 and OPE5 resulted in super-bundles of fibers and flowerlike short-fiber agglomerates when different conditions were applied. The number of polymorphic structures increases on increasing the conjugation length, as seen in the case of OPE7 with n=5, which resulted in a variety of exotic structures, the formation of which could be controlled by varying the substrate, concentration, and humidity

    Self-assembly of thienylenevinylene molecular wires to semiconducting gels with doped metallic conductivity

    No full text
    Oligo(thienylenevinylene) (OTV) based gelators with high conductivity are reported. When compared to OTV1, OTV2 having an increased conjugation length forms relatively strong gels with a metallic conductivity of 4.8 S/cm upon doping which is the highest value reported for an organogelator. This new class of conducting gels is expected to be useful for organic electronics and photonics application, particularly for bulk heterojunction devices

    Light-induced ostwald ripening of organic nanodots to rods

    No full text
    Ostwald ripening allows the synthesis of 1D nanorods of metal and semiconductor nanoparticles. However, this phenomenon is unsuccessful with organic π-systems due to their spontaneous self-assembly to elongated fibers or tapes. Here we demonstrate the uses of light as a versatile tool to control the ripening of amorphous organic nanodots (ca. 15 nm) of an azobenzene-derived molecular assembly to micrometer-sized supramolecular rods. A surface-confined dipole variation associated with a low-yield (13–14%) trans–cis isomerization of the azobenzene moiety and the consequent dipole–dipole interaction in a nonpolar solvent is believed to be the driving force for the ripening of the nanodots to rods

    Synthesis and Properties of Amphiphilic Photoresponsive Gelators for Aromatic Solvents

    No full text
    A sugar-based photoresponsive supergelator, <i>N</i>-glycosylazobenzene that shows selective gelation of aromatic solvents is described. The partial <i>trans–cis</i> isomerization of the azobenzene moiety allows photoinduced chopping of the entangled gel fibers to short fibers, resulting in controlled fiber length and gel–sol transition. The gelator is useful for the selective removal of toxic aromatic solvents from water

    Light-Induced Ostwald Ripening of Organic Nanodots to Rods

    No full text
    Ostwald ripening allows the synthesis of 1D nanorods of metal and semiconductor nanoparticles. However, this phenomenon is unsuccessful with organic π-systems due to their spontaneous self-assembly to elongated fibers or tapes. Here we demonstrate the uses of light as a versatile tool to control the ripening of amorphous organic nanodots (ca. 15 nm) of an azobenzene-derived molecular assembly to micrometer-sized supramolecular rods. A surface-confined dipole variation associated with a low-yield (13–14%) <i>trans–cis</i> isomerization of the azobenzene moiety and the consequent dipole–dipole interaction in a nonpolar solvent is believed to be the driving force for the ripening of the nanodots to rods

    Fluorination of Benzothiadiazole–Benzobisthiazole Copolymer Leads to Additive-Free Processing with Meliorated Solar Cell Performance

    No full text
    Processing solvents and conditions have unique importance in the performance of bulk heterojunction organic solar cells. In the present work, we have investigated the role of a primary solvent and solvent additive in the device performance of two benzobisthiazole (BBTz)-based push–pull type polymers. In an inverted cell structure, the BBTz-<i>co</i>-fluorinated benzothiadiazole polymer (PBBTzFT) with a PC<sub>71</sub>BM acceptor showed additive-free enhanced performance with a power conversion efficiency (PCE) of 6.4% from a 1,2-dichlorobenzene solvent, while the BBTz-<i>co</i>-pyridylthiadiazole polymer (PBBTzPT) showed maximum performance from a chlorobenzene (CB) solution with a 1,8-diiodooctane (DIO) additive (PCE = 2.3%). The detailed investigation by atomic force microscopy and two-dimensional grazing incidence X-ray diffraction corroborates that the fluorination of benzothiadiazole brought about optimal morphology without a solvent additive, the PCE of which is comparable with the previous nonfluorinated analogue (PCE = 6.5%) processed from CB with DIO

    Exploring Alkyl Chains in Benzobisthiazole-Naphthobisthiadiazole Polymers: Impact on Solar-Cell Performance, Crystalline Structures, and Optoelectronics

    No full text
    The shapes and lengths of the alkyl chains of conjugated polymers greatly affect the efficiencies of organic photovoltaic devices. This often results in a trade-off between solubility and self-organizing behavior; however, each material has specific optimal chains. Here we report on the effect of alkyl side chains on the film morphologies, crystallinities, and optoelectronic properties of new benzobisthiazole-naphthobisthiadiazole (PBBT-NTz) polymers. The power conversion efficiencies (PCEs) of linear-branched and all-branched polymers range from 2.5% to 6.6%; the variations in these PCEs are investigated by atomic force microscopy, two-dimensional X-ray diffraction (2D-GIXRD), and transient photoconductivity techniques. The best-performing linear-branched polymer, bearing dodecyl and decyltetradecyl chains (C12-DT), exhibits nanometer-scale fibers along with the highest crystallinity, comprising predominant edge-on and partial face-on orientations. This morphology leads to the highest photoconductivity and the longest carrier lifetime. These results highlight the importance of long alkyl chains for inducing intermolecular stacking, which is in contrast to observations made for analogous previously reported polymers

    Following the TRMC Trail: Optimization of Photovoltaic Efficiency and Structure–Property Correlation of Thiophene Oligomers

    No full text
    Semiconducting conjugated oligomers having same end group (<i>N</i>-ethylrhodanine) but different central core (thiophene: <b>OT–T</b>, bithiophene: <b>OT–BT</b>, thienothiophene: <b>OT–TT</b>) connected through thiophene pi-linker (alkylated terthiophene) were synthesized for solution processable bulk-heterojunction solar cells. The effect of the incorporation of an extra thiophene to the central thiophene unit either through C–C bond linkage to form bithiophene or by fusing two thiophenes together to form thienothiophene on the optoelectronic properties and photovoltaic performances of the oligomers were studied in detail. Flash photolysis time-resolved microwave conductivity (FP–TRMC) technique shows <b>OT–TT</b> has significantly higher photoconductivity than <b>OT–T</b> and <b>OT–BT</b> implying that the former can outperform the latter two derivatives by a wide margin under identical conditions in a bulk-heterojunction solar cell device. However, the initial photovoltaic devices fabricated from all three oligomers (with PC<sub>71</sub>BM as the acceptor) gave power conversion efficiencies (PCEs) of about 0.7%, which was counterintuitive to the TRMC observation. By using TRMC results as a guiding tool, solution engineering was carried out; no remarkable changes were seen in the PCE of <b>OT–T</b> and <b>OT–BT</b>. On the other hand, 5-fold enhancement in the device efficiency was achieved in <b>OT–TT</b> (PCE: 3.52%, <i>V</i><sub>OC</sub>: 0.80 V, <i>J</i><sub>SC</sub>: 8.74 mA cm<sup>–2</sup>, FF: 0.50), which was in correlation with the TRMC results. The structure–property correlation and the fundamental reasons for the improvement in device performance upon solvent engineering were deduced through UV–vis absorption, atomic force microscopy, bright-field transmission electron microscopy, photoluminescence quenching analysis and two-dimensional grazing incidence X-ray diffraction studies
    corecore