6,629 research outputs found

    Linear dynamics of the solar convection zone: excitation of waves in unstably stratified shear flows

    Get PDF
    In this paper we report on the nonresonant conversion of convectively unstable linear gravity modes into acoustic oscillation modes in shear flows. The convectively unstable linear gravity modes can excite acoustic modes with similar wave-numbers. The frequencies of the excited oscillations may be qualitatively higher than the temporal variation scales of the source flow, while the frequency spectra of the generated oscillations should be intrinsically correlated to the velocity field of the source flow. We anticipate that this nonresonant phenomenon can significantly contribute to the production of sound waves in the solar convection zone.Comment: 8 pages. To appear in the proceedings of the conference "Waves in Dusty, Solar and Space Plasmas", Leuven, Belgium 21-26 May 200

    Effect of partial ionization on wave propagation in solar magnetic flux tubes

    Full text link
    Observations show that waves are ubiquitous in the solar atmosphere and may play an important role for plasma heating. The study of waves in the solar corona is usually based on linear ideal magnetohydrodynamics (MHD) for a fully ionized plasma. However, the plasma in the photosphere and the chromosphere is only partially ionized. Here we investigate theoretically the impact of partial ionization on MHD wave propagation in cylindrical flux tubes in the two-fluid model. We derive the general dispersion relation that takes into account the effects of neutral-ion collisions and the neutral gas pressure. We take the neutral-ion collision frequency as an arbitrary parameter. Particular results for transverse kink modes and slow magnetoacoustic modes are shown. We find that the wave frequencies only depend on the properties of the ionized fluid when the neutral-ion collision frequency is much lower that the wave frequency. For high collision frequencies realistic of the solar atmosphere ions and neutrals behave as a single fluid with an effective density corresponding to the sum of densities of both fluids and an effective sound velocity computed as the average of the sound velocities of ions and neutrals. The MHD wave frequencies are modified accordingly. The neutral gas pressure can be neglected when studying transverse kink waves but it has to be taken into account for a consistent description of slow magnetoacoustic waves. The MHD waves are damped due to neutral-ion collisions. The damping is most efficient when the wave frequency and the collision frequency are of the same order of magnitude. For high collision frequencies slow magnetoacoustic waves are more efficiently damped than transverse kink waves. In addition, we find the presence of cut-offs for certain combinations of parameters that cause the waves to become non-propagating.Comment: Accepted for publication in A&

    Mechanical cleaning of graphene

    Full text link
    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces charge carrier mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode AFM removes residues and significantly improves the electronic properties. A mechanically cleaned dual-gated bilayer graphene transistor with hBN dielectrics exhibited a mobility of ~36,000 cm2/Vs at low temperature.Comment: 4 pages, 4 figure

    XMM-Newton and INTEGRAL analysis of the Supergiant Fast X-ray Transient IGR J17354-3255

    Get PDF
    We present the results of combined INTEGRAL and XMM-Newton observations of the supergiant fast X-ray transient (SFXT) IGR J17354-3255. Three XMM-Newton observations of lengths 33.4 ks, 32.5 ks and 21.9 ks were undertaken, the first an initial pointing to identify the correct source in the field of view and the latter two performed around periastron. Simultaneous INTEGRAL observations across 66%\sim66\% of the orbital cycle were analysed but the source was neither detected by IBIS/ISGRI nor by JEM-X. The XMM-Newton light curves display a range of moderately bright X-ray activity but there are no particularly strong flares or outbursts in any of the three observations. We show that the spectral shape measured by XMM-Newton can be fitted by a consistent model throughout the observation, suggesting that the observed flux variations are driven by obscuration from a wind of varying density rather than changes in accretion mode. The simultaneous INTEGRAL data rule out simple extrapolation of the simple powerlaw model beyond the XMM-Newton energy range.Comment: 13 pages, 9 figures, This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society Published by Oxford University Pres

    New insights on accretion in Supergiant Fast X-ray Transients from XMM-Newton and INTEGRAL observations of IGR J17544-2619

    Full text link
    XMM-Newton observations of the supergiant fast X-ray transient IGR ~J17544-2619 are reported and placed in the context of an analysis of archival INTEGRAL/IBIS data that provides a refined estimate of the orbital period at 4.9272±\pm0.0004 days. A complete outburst history across the INTEGRAL mission is reported. Although the new XMM-Newton observations (each lasting \sim15 ks) targeted the peak flux in the phase-folded hard X-ray light curve of IGR ~J17544-2619, no bright outbursts were observed, the source spending the majority of the exposure at intermediate luminosities of the order of several 1033^{33}\,erg\,s1^{-1} (0.5\,-\,10\,keV) and displaying only low level flickering activity. For the final portion of the exposure, the luminosity of IGR ~J17544-2619 dropped to \sim4×\times1032^{32}\,erg\,s1^{-1} (0.5 - 10 keV), comparable with the lowest luminosities ever detected from this source, despite the observations being taken near to periastron. We consider the possible orbital geometry of IGR ~J17544-2619 and the implications for the nature of the mass transfer and accretion mechanisms for both IGR ~J17544-2619 and the SFXT population. We conclude that accretion under the `quasi-spherical accretion' model provides a good description of the behaviour of IGR ~J17544-2619, and suggest an additional mechanism for generating outbursts based upon the mass accumulation rate in the hot shell (atmosphere) that forms around the NS under the quasi-spherical formulation. Hence we hope to aid in explaining the varied outburst behaviours observed across the SFXT population with a consistent underlying physical model.Comment: 12 pages, 5 figures, accepted for publication in MNRA

    Allergic contact dermatitis from modified colophonium in wound dressings

    Get PDF
    This study concerns a 69-year-old female patient with a longstanding history of venous ulcerations on both lower legs and multiple sensitivities, who developed eczematous lesions with the hydrocolloid dressing Combiderm (Convatec Ltd., a Bristol-Myers Squibb division, Ickenham, Middlesex, UK). Epicutaneous tests were positive to this dressing and to a modified colophonium derivative, i.e. glyceryl rosinate, however not to the unmodified colophonium from the standard series. A review of the literature showed several case reports about sensitization to similar hydrocolloids being distributed under various brand names in different countries and which contain the pentaerythritol ester of the hydrogenated rosin as the tackifying agent. Some of the patients described did, while others did not, react to colophonium but only to a modified derivative. In our patient, the reaction to glyceryl rosinate most probably represent cross-sensitivity with the modified colophonium derivative used in Combiderm, the presence (but not the exact nature) of which was showed by the company. In patients where allergic contact dermatitis from hydrocolloid dressings is strongly suspected and colophonium tests negatively, patch testing to modified colophonium derivatives should therefore be performed. As the complete composition of wound dressings is most often unknown, we urgently advocate legal requirements for labelling of those and in fact all medically used devices
    corecore