7 research outputs found

    Superpixel-based spatial amplitude and phase modulation using a digital micromirror device

    Get PDF
    We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F=0.98F=0.98 for a target field with fully independent phase and amplitude at a resolution of 8×88\times 8 pixels per diffraction limited spot. For the LG10_{10} orbital angular momentum mode the calculated fidelity is F=0.99993F=0.99993, using 768×768768\times 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50%50\% and 18%18\%, with a comparable light efficiency of around 5%5\%. Our control software is publicly available.Comment: 9 pages, 6 figure

    Pathlengths of open channels in multiple scattering media

    Get PDF
    We report optical measurements of the spectral width of open transmission channels in a three-dimensional diffusive medium. The light transmission through a sample is enhanced by efficiently coupling to open transmission channels using repeated digital optical phase conjugation. The spectral properties are investigated by enhancing the transmission, fixing the incident wavefront and scanning the wavelength of the laser. We measure the transmitted field to extract the field correlation function and the enhancement of the total transmission. We find that optimizing the total transmission leads to a significant increase in the frequency width of the field correlation function. Additionally we find that the enhanced transmission persists over an even larger frequency bandwidth. This result shows open channels in the diffusive regime are spectrally much wider than previous measurements in the localized regime suggest

    Introduction to lattice gauge theories

    No full text
    SIGLEAvailable from CEN Saclay, Service de Documentation, 91191 - Gif-sur-Yvette Cedex (France) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Secure communication with coded wavefronts

    No full text
    Communication between a sender and receiver can be made secure by encrypting the message using public or private shared keys. Quantum key distribution utilizes the unclonability of a quantum state to securely generate a key between the two parties [1]. However, without some way of authentication of either the sender or the receiver, a man-in-the-middle attack with an eavesdropper mimicking the receiver can break the security of the protocol
    corecore