11 research outputs found

    The role of vestibular cues in postural sway

    Full text link
    Controlling posture requires continuous sensory feedback about body motion and orientation, including from the vestibular organs. Little is known about the role of tilt vs. translation vs. rotation vestibular cues. We examined whether intersubject differences in vestibular function were correlated with intersubject differences in postural control. Vestibular function was assayed using vestibular direction-recognition perceptual thresholds, which determine the smallest motion that can be reliably perceived by a subject seated on a motorized platform in the dark. In study A, we measured thresholds for lateral translation, vertical translation, yaw rotation, and head-centered roll tilts. In study B, we measured thresholds for roll, pitch, and left anterior-right posterior and right anterior-left posterior tilts. Center-of-pressure (CoP) sway was measured in sensory organization tests (study A) and Romberg tests (study B). We found a strong positive relationship between CoP sway and lateral translation thresholds but not CoP sway and other thresholds. This finding suggests that the vestibular encoding of lateral translation may contribute substantially to balance control. Since thresholds assay sensory noise, our results support the hypothesis that vestibular noise contributes to spontaneous postural sway. Specifically, we found that lateral translation thresholds explained more of the variation in postural sway in postural test conditions with altered proprioceptive cues (vs. a solid surface), consistent with postural sway being more dependent on vestibular noise when the vestibular contribution to balance is higher. These results have potential implications for vestibular implants, balance prostheses, and physical therapy exercises.NEW & NOTEWORTHY Vestibular feedback is important for postural control, but little is known about the role of tilt cues vs. translation cues vs. rotation cues. We studied healthy human subjects with no known vestibular pathology or symptoms. Our findings showed that vestibular encoding of lateral translation correlated with medial-lateral postural sway, consistent with lateral translation cues contributing to balance control. This adds support to the hypothesis that vestibular noise contributes to spontaneous postural sway

    Potential Mechanisms of Sensory Augmentation Systems on Human Balance Control

    Get PDF
    Numerous studies have demonstrated the real-time use of visual, vibrotactile, auditory, and multimodal sensory augmentation technologies for reducing postural sway during static tasks and improving balance during dynamic tasks. The mechanism by which sensory augmentation information is processed and used by the CNS is not well understood. The dominant hypothesis, which has not been supported by rigorous experimental evidence, posits that observed reductions in postural sway are due to sensory reweighting: feedback of body motion provides the CNS with a correlate to the inputs from its intact sensory channels (e.g., vision, proprioception), so individuals receiving sensory augmentation learn to increasingly depend on these intact systems. Other possible mechanisms for observed postural sway reductions include: cognition (processing of sensory augmentation information is solely cognitive with no selective adjustment of sensory weights by the CNS), “sixth” sense (CNS interprets sensory augmentation information as a new and distinct sensory channel), context-specific adaptation (new sensorimotor program is developed through repeated interaction with the device and accessible only when the device is used), and combined volitional and non-volitional responses. This critical review summarizes the reported sensory augmentation findings spanning postural control models, clinical rehabilitation, laboratory-based real-time usage, and neuroimaging to critically evaluate each of the aforementioned mechanistic theories. Cognition and sensory re-weighting are identified as two mechanisms supported by the existing literature

    Influence of Bilateral Vestibular Loss on Spinal Stabilization in Humans

    No full text
    The control of upper body (UB) orientation relative to the pelvis in the frontal plane was characterized in bilateral vestibular loss subjects (BVLs) and compared with healthy control subjects (Cs). UB responses to external perturbations were evoked using continuous pelvis tilts (eyes open and eyes closed) at various amplitudes. Lateral sway of the lower body was prevented on all tests. UB sway was summarized using root-mean-square measures and dynamic behavior was characterized using frequency response functions (FRFs) from 0.023 to 10.3 Hz. Both subject groups had similar FRF variations as a function of stimulus frequency and were relatively unaffected by visual availability, indicating that visual orientation cues contributed very little to UB control. BVLs had larger UB sway at frequencies below ∼1 Hz compared with Cs. A feedback model of UB orientation control was used to identify sensory contributions to spinal stability and differences between subject groups. The model-based interpretation of experimental results indicated that a phasic proprioceptive signal encoding the angular velocity of UB relative to lower body motion was a major contributor to overall system damping. Parametric system identification showed that BVLs used proprioceptive information that oriented the UB toward the pelvis to a greater extent compared with Cs. Both subject groups used sensory information that oriented the UB vertical in space to a greater extent as pelvis tilt amplitudes increased. In BVLs, proprioceptive information signaling the UB orientation relative to the fixed lower body provided the vertical reference, whereas in Cs, vestibular information also contributed to the vertical reference

    Influence of Stance Width on Frontal Plane Postural Dynamics and Coordination in Human Balance Control

    No full text
    The influence of stance width on frontal plane postural dynamics and coordination in human bipedal stance was studied. We tested the hypothesis that when subjects adopt a narrow stance width, they will rely heavily on nonlinear control strategies and coordinated counter-phase upper and lower body motion to limit center-of-mass (CoM) deviations from upright; as stance increases, the use of these strategies will diminish. Freestanding frontal plane body sway was evoked through continuous pseudorandom rotations of the support surface on which subjects stood with various stimulus amplitudes. Subjects were either eyes open (EO) or closed (EC) and adopted various stance widths. Upper body, lower body, and CoM kinematics were summarized using root-mean-square and peak-to-peak measures, and dynamic behavior was characterized using frequency-response and impulse-response functions. In narrow stance, CoM frequency-response function gains were reduced with increasing stimulus amplitude and in EO compared with EC; in wide stance, gain reductions were much less pronounced. Results show that the narrow stance postural system is nonlinear across stimulus amplitude in both EO and EC conditions, whereas the wide stance postural system is more linear. The nonlinearity in narrow stance is likely caused by an amplitude-dependent sensory reweighting mechanism. Finally, lower body and upper body sway were approximately in-phase at low frequencies (<1 Hz) and out-of-phase at high frequencies (>1 Hz) across all stance widths, and results were therefore inconsistent with the hypothesis that subjects made greater use of coordinated counter-phase upper and lower body motion in narrow compared with wide stance conditions
    corecore