10 research outputs found

    Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Get PDF
    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness

    Detector Performance for the FIREBall-2 UV Experiment

    Get PDF
    We present an overview of the detector for the upcoming Faint Intergalactic Red-shifted Emission Balloon (FIREBall-2) experiment, with a particular focus on the development of device-integrated optical coatings and detector quantum efficiency (QE). FIREBall-2 is designed to measure emission from the strong resonance lines of HI, OVI, and CIV, all red-shifted to 195-225 nm window; its detector is a delta-doped electron multiplying charge coupled device (EM-CCD). Delta-doped arrays, invented at JPL, achieve 100% internal QE from the UV through the visible. External losses due to reflection (~70% in some UV regions) can be mitigated with antireflection coatings (ARCs). Using atomic layer deposition (ALD), thin-film optical filters are incorporated with existing detector technologies. ALD offers nanometer-scale control over film thickness and interface quality, allowing for precision growth of multilayer films. Several AR coatings, including single and multi-layer designs, were tested for FIREBall-2. QE measurements match modeled transmittance behavior remarkably well, showing improved performance in the target wavelength range. Also under development are ALD coatings to enhance QE for a variety of spectral regions throughout the UV (90-320 nm) and visible (320-1000 nm) range both for space-based imaging and spectroscopy as well as for ground-based telescopes

    Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    Get PDF
    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness

    The swift IFU Detector system and IFU observations of z~3 galaxies

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    No full text
    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness

    Expected performance and simulated observations of the instrument HARMONI at the European Extremely Large Telescope (E-ELT)

    No full text
    Trabajo presentado en SPIE Astronomical Telescopes, celebrado en San Diego (California), del 15 de junio al 2 de julio de 2010HARMONI has been conceived as a workhorse visible and near-infrared (0.47-2.45 microns) integral field spectrograph for the European Extremely Large Telescope (E-ELT). It provides both seeing and diffraction limited observations at several spectral resolutions (R= 4000, 10000, 20000). HARMONI can operate with almost any flavor of AO (e.g. GLAO, LTAO, SCAO), and it is equipped with four spaxel scales (4, 10, 20 and 40 mas) thanks to which it can be optimally configured for a wide variety of science programs, from ultra-sensitive observations of point sources to highangular resolution spatially resolved studies of extended objects. In this paper we describe the expected performance of the instrument as well as its scientific potential. We show some simulated observations for a selected science program, and compare HARMONI with other ground and space based facilities, like VLT, ALMA, and JWST, commenting on their synergies and complementarities

    Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    No full text
    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≌ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.(OLD)Applied Quantum Architecture

    HARMONI: a single-field wide-band integral-field spectrograph for the European ELT

    No full text
    Trabajo presentado en SPIE Astronomical Telescopes, celebrado en San Diego (California), del 15 de junio al 2 de julio de 2010We describe the results of a Phase A study for a single field, wide band, near-infrared integral field spectrograph for the European Extremely Large Telescope (E-ELT). HARMONI, the High Angular Resolution Monolithic Optical & Nearinfrared Integral field spectrograph, provides the E-ELT’s core spectroscopic requirement. It is a work-horse instrument, with four different spatial scales, ranging from seeing to diffraction-limited, and spectral resolving powers of 4000, 10000 & 20000 covering the 0.47 to 2.45 μm wavelength range. It is optimally suited to carry out a wide range of observing programs, focusing on detailed, spatially resolved studies of extended objects to unravel their morphology, kinematics and chemical composition, whilst also enabling ultra-sensitive observations of point sources. We present a synopsis of the key science cases motivating the instrument, the top level specifications, a description of the opto-mechanical concept, operation and calibration plan, and image quality and throughput budgets. Issues of expected performance, complementarity and synergies, as well as simulated observations are presented elsewhere in these proceeding
    corecore