56 research outputs found

    Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes.

    Get PDF
    The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency

    Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes concomitant with higher ceramide content.

    Get PDF
    OBJECTIVE: We tested the primary hypotheses that sphingolipid and diacylglycerol (DAG) content is higher within insulin-resistant muscle and that the association between intramyocellular triglycerides (IMTG) and insulin resistance is muscle fiber type specific. RESEARCH DESIGN AND METHODS: A nested case-control analysis was conducted in 22 obese (BMI >30 kg/m(2)) women who were classified as insulin-resistant (IR; n = 12) or insulin-sensitive (IS; n = 10), determined by hyperinsulinemic-euglycemic clamp (>30% greater in IS compared with IR, P < 0.01). Sphingolipid and DAG content was determined by high-performance liquid chromatography-tandem mass spectrometry. Fiber type-specific IMTG content was histologically determined. Gene expression was determined by quantitative PCR. RESULTS: Total (555 +/- 53 vs. 293 +/- 54 pmol/mg protein, P = 0.004), saturated (361 +/- 29 vs. 179 +/- 34 pmol/mg protein, P = 0.001), and unsaturated (198 +/- 29 vs. 114 +/- 21 pmol/mg protein, P = 0.034) ceramides were higher in IR compared with IS. DAG concentrations, however, were similar. IMTG content within type I myocytes, but not type II myocytes, was higher in IR compared with IS subjects (P = 0.005). Insulin sensitivity was negatively correlated with IMTG within type I myocytes (R = -0.51, P = 0.026), but not with IMTG within type II myocytes. The proportion of type I myocytes was lower (41 vs. 59%, P < 0.01) in IR subjects. Several genes involved in lipid droplet and fatty acid metabolism were differentially expressed in IR compared with IS subjects. CONCLUSIONS: Human skeletal muscle insulin resistance is related to greater IMTG content in type I but not type II myocytes, to greater ceramide content, and to alterations in gene expression associated with lipid metabolism

    Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide.

    Get PDF
    AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide. METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry. RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions. CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298

    Calorie Restriction-induced Weight Loss and Exercise Have Differential Effects on Skeletal Muscle Mitochondria Despite Similar Effects on Insulin Sensitivity.

    Get PDF
    Skeletal muscle insulin resistance and reduced mitochondrial capacity have both been reported to be affected by aging. The purpose of this study was to compare the effects of calorie restriction-induced weight loss and exercise on insulin resistance, skeletal muscle mitochondrial content, and mitochondrial enzyme activities in older overweight to obese individuals. Insulin-stimulated rates of glucose disposal (Rd) were determined using the hyperinsulinemic euglycemic clamp before and after completing 16 weeks of either calorie restriction to induce weight loss (N = 7) or moderate exercise (N = 10). Mitochondrial volume density, mitochondria membrane content (cardiolipin), and activities of electron transport chain (rotenone-sensitive NADH-oxidase), tricarboxylic acid (TCA) cycle (citrate synthase) and β-oxidation pathway (β-hydroxyacyl CoA dehydrogenase; β-HAD) were measured in percutaneous biopsies of the vastus lateralis before and after the interventions. Rd improved similarly (18.2% ± 9.0%, p < .04) with both weight loss and exercise. Moderate exercise significantly increased mitochondrial volume density (14.5% ± 2.0%, p < .05), cardiolipin content (22.5% ± 13.4%, p < .05), rotenone-sensitive NADH-oxidase (65.7% ± 13.2%, p = .02) and β-HAD (30.7% ± 6.8%, p ≤ .03) activity, but not citrate synthase activity (10.1% ± 4.0%). In contrast, calorie restriction-induced weight loss did not affect mitochondrial content, NADH-oxidase or β-HAD, yet increased citrate synthase activity (44.1% ± 21.1%, p ≤ .04). Exercise (increase) or weight loss (decrease) induced a remodeling of cardiolipin with a small (2%-3%), but significant change in the relative content of tetralinoleoyl cardiolipin. Exercise increases both mitochondria content and mitochondrial electron transport chain and fatty acid oxidation enzyme activities within skeletal muscle, while calorie restriction-induced weight loss did not, despite similar improvements in insulin sensitivity in overweight older adults

    The relationship between mitochondrial function and walking performance in older adults with a wide range of physical function.

    Get PDF
    Age related declines in walking performance may be partly attributable to skeletal muscle mitochondrial dysfunction as mitochondria produce over 90% of ATP needed for movement and the capacity for oxidative phosphorylation decreases with age. Participants were from two studies: an ancillary to the Lifestyle Interventions and Independence for Elders (LIFE) Study (n=33), which recruited lower functioning participants (Short Physical Performance Battery [SPPB], 7.8±1.2), and the Study of Energy and Aging-Pilot (SEA, n=29), which enrolled higher functioning (SPPB, 10.8±1.4). Physical activity was measured objectively using the Actigraph accelerometer (LIFE) and SenseWear Pro armband (SEA). Phosphocreatine recovery following muscle contraction of the quadriceps was measured using (31)P magnetic resonance spectroscopy and ATPmax (mM ATP/s) was calculated. Walking performance was defined as time (s) to walk 400m at a usual-pace. The cross-sectional association between mitochondrial function and walking performance was assessed using multivariable linear regression. Participants were 77.6±5.3years, 64.2% female and 67.2% white. ATPmax was similar in LIFE vs. SEA (0.52±0.14 vs. 0.55±0.14, p=0.31), despite different function and activity levels (1.6±2.2 vs.77.4±73.3min of moderate activity/day, p<0.01). Higher ATPmax was related to faster walk-time in SEA (r(2)=0.19, p=0.02,); but not the LIFE (r(2)<0.01, p=0.74) cohort. Mitochondrial function was associated with walking performance in higher functioning, active older adults, but not lower functioning, sedentary older adults

    Skeletal Muscle Mitochondrial Function and Fatigability in Older Adults.

    Get PDF
    Fatigability increases while the capacity for mitochondrial energy production tends to decrease significantly with age. Thus, diminished mitochondrial function may contribute to higher levels of fatigability in older adults. The relationship between fatigability and skeletal muscle mitochondrial function was examined in 30 participants aged 78.5 ± 5.0 years (47% female, 93% white), with a body mass index of 25.9 ± 2.7 kg/m(2) and usual gait-speed of 1.2 ± 0.2 m/s. Fatigability was defined using rating of perceived exertion (6-20 point Borg scale) after a 5-minute treadmill walk at 0.72 m/s. Phosphocreatine recovery in the quadriceps was measured using (31)P magnetic resonance spectroscopy and images of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and oxidative capacity of the quadriceps (ATPmax·Quadriceps volume) were calculated. Peak aerobic capacity (VO2peak) was measured using a modified Balke protocol. ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM ATP·mL/s lower (p = .03) in those with high (rating of perceived exertion ≥10) versus low (rating of perceived exertion ≤9) fatigability. Participants with high fatigability required a significantly higher proportion of VO2peak to walk at 0.72 m/s compared with those with low fatigability (58.7 ± 19.4% vs 44.9 ± 13.2%, p < .05). After adjustment for age and sex, higher ATPmax was associated with lower odds of having high fatigability (odds ratio: 0.34, 95% CI: 0.11-1.01, p = .05). Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by contributing to lower VO2peak, is associated with higher fatigability in older adults

    Increased intramuscular lipid storage in the insulin-resistant and endurance-trained state

    No full text
    Numerous studies have reported a strong correlation between intramuscular triacylglycerol (IMTG) content and insulin resistance. However, the proposed relationship between IMTG accumulation and skeletal muscle insulin resistance is not unambiguous, as trained athletes have been shown to be markedly insulin sensitive despite an elevated IMTG storage. Though the latter has often been attributed to differences in muscle fibre type composition and/or structural characteristics of the intramyocellular lipid deposits, recent studies have failed to provide such evidence. The greater insulin sensitivity despite an elevated IMTG deposition in the endurance-trained state has often been described as a metabolic paradox. However, divergent metabolic events are responsible for the greater IMTG content in the endurance-trained versus insulin-resistant states. The greater IMTG storage in the trained athlete represents an adaptive response to endurance training, allowing a greater contribution of the IMTG pool as a substrate source during exercise. In contrast, elevated IMTG stores in the obese and/or type 2 diabetes patient seem to be secondary to a structural imbalance between plasma free fatty acid availability, fatty acid (FA) storage and oxidation. Therefore, the reported correlation between IMTG content and insulin resistance does not represent a functional relationship, as it is strongly influenced by training status and/or habitual physical activity. It can be argued that the ratio between IMTG content and muscle oxidative capacity represents a more accurate marker of insulin resistance. Interventions to augment mitochondrial density and/or function are likely to improve the balance between FA uptake and oxidation and should be applied to prevent and/or treat insulin resistance

    Exercise dose and insulin sensitivity: relevance for diabetes prevention.

    Get PDF
    PURPOSE: Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these responses are dose dependent is not known. The purpose of this study was to examine whether exercise dose was associated with improvements in insulin sensitivity after 4 months of exercise training in previously sedentary adults. METHODS: Fifty-five healthy volunteers participated in a 16-wk supervised endurance exercise intervention with a pre/postintervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test, and body composition by dual-energy x-ray absorptiometry. The exercise intervention consisted of three to five sessions per week with a minimum of three sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 min per session. Exercise dose, expressed as average kilocalories expended per week, was computed as the product of exercise intensity, duration and frequency. RESULTS: Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, whereas frequency was not. CONCLUSIONS: This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations
    corecore