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ABSTRACT 

Background: Fatigability tends to increase while the capacity for mitochondrial energy 

production tends to decrease significantly with age. Thus, diminished mitochondrial function 

may contribute to higher levels of fatigability in older adults.  

Methods:  The relationship between fatigability and skeletal muscle mitochondrial function 

was examined in 30 participants aged 78.5±5.0 years (47% female, 93% white), with a BMI of 

25.9±2.7kg/m2 and usual gait-speed of 1.2±0.2m/s. Fatigability was defined using Rating of 

Perceived Exertion (RPE, 6-20) after a 5-minute treadmill walk at 0.72m/s. Phosphocreatine 

recovery in the quadriceps was measured using 31P magnetic resonance spectroscopy and images 

of the quadriceps were captured to calculate quadriceps volume. ATPmax (mM ATP/s) and 

oxidative capacity of the quadriceps (ATPmax·Quadriceps Volume) were calculated. Peak 

aerobic capacity (VO2peak) was measured using a modified Balke protocol. 

Results: ATPmax·Quadriceps volume was associated with VO2peak and was 162.61mM 

ATP•mL/s lower (p = 0.03) in those with high (RPE ≥10) vs. low (RPE ≤ 9) fatigability. 

Participants with high fatigability required a significantly higher proportion of VO2peak to walk 

at 0.72m/s compared to those with low fatigability (58.7±19.4 vs. 44.9±13.2%, p < 0.05). After 

adjustment for age and sex, higher ATPmax was associated with lower odds of having high 

fatigability (OR: 0.34, 95% CI: 0.11-1.01, p = 0.05).  

Conclusions: Lower capacity for oxidative phosphorylation in the quadriceps, perhaps by 

contributing to lower VO2peak, is associated with higher fatigability in older adults.  
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INTRODUCTION 

 Fatigue is common among older adults (1) and associated with poorer physical function 

and disability both cross-sectionally (2) and longitudinally (3). Fatigue is primarily considered to 

be an energy disorder and a large proportion cannot be attributed to underlying diseases (4). It 

has been hypothesized that age-related decreases in mitochondrial function may contribute to 

higher levels of age-related fatigue (5-6). The capacity for oxidative phosphorylation in skeletal 

muscle is lower in older compared to younger adults; however, more recent evidence shows this 

difference varies across muscle groups and appears largely attributable to decreased physical 

activity (7-12). Peak aerobic capacity (VO2peak) also decreases significantly with age, 

independent of muscle loss and physical activity level (13), and is considered a hallmark 

manifestation of mitochondrial disorders (14). Hence, age-related decreased capacity for 

mitochondrial energy production may contribute to higher levels of fatigability via lower aerobic 

capacity. Little is known, however, about the etiology of age-related fatigue, particularly as it 

relates to mitochondrial energetics (5-6).  

 Fatigability, similar conceptually to exercise tolerance, is fatigue anchored to an activity 

of a specific intensity and duration (6). Fatigability, as opposed to global fatigue, provides 

insight into the degree to which an individual is limited physically due to fatigue (6,15). The 

primary objective of this research was to determine if skeletal muscle mitochondrial oxidative 

capacity determined by 31P magnetic resonance spectroscopy (31P MRS), was related to higher 

levels of fatigability in older adults. We hypothesized that that those with higher compared to 

lower fatigability would have lower skeletal muscle oxidative capacity. We also hypothesized 

that physical activity would attenuate this relationship and VO2peak would act as a mediator. 
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METHODS 

Participants 

 Community-dwelling (n = 37) men and women aged 70–89 years from the Pittsburgh, 

PA area were enrolled into the Study of Energy and Aging Pilot. Inclusion criteria was body 

weight ≤ 285lbs for men and ≤ 250lbs for women; body mass index (BMI) 20–32kg/m2; ability 

to walk without an assistive device and free of difficulty performing basic activities of daily 

living. Exclusion criteria: symptomatic cardiovascular or pulmonary disease, heart attack, 

angioplasty, or heart surgery within the past 3-months, or a cerebral hemorrhage within the past 

6-months, stroke within the past 12-months, or chest pain during walking in the past 30-days 

(16). Participants were telephone screened and reassessed at the magnetic resonance imaging 

(MRI) center for scanner eligibility, including ability to lie in a supine position for 1-hour, no 

metal or other implants, joint replacements, or tattoos. Participants had to be willing and able to 

sign an informed consent. This study was approved by the University of Pittsburgh and 

California Pacific Medical Center Institutional Review Boards.  

 

Clinical Examination and Measurements 

 Body height (cm) was measured using a wall-mounted stadiometer and weight (kg) with 

a certified and calibrated scale and used to calculate BMI, kg/m2. Participants completed 

demographic, medical and disease history questionnaires. Depression was assessed using a short 

form of the Center for Epidemiologic Studies Depression Scale (CES-D) (17). 

 Physical function was measured by the Short Physical Performance Battery (SPPB), 

which includes a 6m walk, chair stands and balance tests (18). Usual gait-speed was derived 
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from the faster of two 6m trials. Time to walk 400m (s) at usual pace was also measured. Seven-

day free-living physical activity was assessed using the SenseWear™ (BodyMedia Pittsburgh, 

PA) Pro armband. The manufacturer’s proprietary algorithm was used to calculate minutes-per-

day of moderate (≥ 3METs) physical activity. 

 

VO2Peak Test  

 VO2peak was determined using a modified Balke protocol (19) and participant’s usual 

6m walking speed was used throughout the test. Treadmill grade was increased 2% every 2-

minutes until volitional exhaustion. A resting 12-lead electrocardiogram was conducted prior to 

and monitored continuously during the test. VO2 measurements were obtained with a metabolic 

cart (Moxus, AEI Technologies, Pittsburgh, PA). Gas analyzers and flow, using a 3L syringe, 

were calibrated before each test. Studies employing similar protocols in older adults report 

excellent reproducibility of maximal treadmill walking time (ICC = 0.87) (20), which correlates 

highly with VO2peak (r = 0.92) (21). 

 

Determination of ATPmax by 31P MRS 

 Maximal mitochondrial ATP production (ATPmax) following an acute bout of knee 

extensor exercise was determined in vivo using 31P MRS. Phosphocreatine (PCr) recovery after 

exercise was used to quantify rates of mitochondrial ATP production. 31P MRS has been 

validated by animal and human studies showing that ATPmax varies in direct proportion to 

oxidative enzyme activity of healthy muscle (22-23) and corresponds to mitochondrial content in 

human muscle (24). ATPmax had good reproducibility illustrated by a high correlation (r = 0.92)   
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between same day repeat scans of 8 participants and Bland Altman analysis (Supplemental 

Figure 1). 

 The exercise protocol was performed in an MRI magnet (3T TIM Trio, Siemens’ Medical 

System). Participants laid supine with the right knee (unless contraindicated) elevated at ~30o. 

Straps were placed over the legs and a 2.5” surface RF coil tuned to 31P was placed over the 

quadriceps. Signal was collected by a hemisphere defined by the coil radius (1.25”), which we 

previously confirmed using an image generated by a similarly sized coil (24). Participants kicked 

repeatedly as hard and as fast as they could for two bouts (30s and 36s), each followed by a 6-

minute rest. The protocol was designed to deplete PCr stores by 33-66% to ensure high signal to 

noise defining PCr recovery without inducing acidosis (pH < 6.8), which inhibits oxidative 

phosphorylation. PCr recovery rate (ATPmax) was measured after exercise until PCr returned to 

baseline levels.  

 Phosphorus spectra were collected using a standard one pulse experiment to determine 

levels of PCr, ATP, Pi, PDE (phosphodiesters) and pH throughout exercise and recovery. PCr, 

Pi, PDE and ATP peak areas in the fully relaxed spectra were measured by integration using 

Varian VNMR 6.1C software (Varian Medical Systems, Palo Alto, CA). Areas of the PCr and Pi 

peaks were expressed relative to the ATP peak (Supplemental Table 2). Previous analyses of 

human vastus lateralis muscle biopsies revealed that ATP content accounted for the range of 

PCr/ATP levels determined by MRS among participants aged 65-80 (24).  In contrast, PCr was 

stable (as was total creatine) and averaged 27 mM.  Thus, as previously reported (16), we used 

27 mM PCr to determine ATPmax. Changes in PCr and Pi peak areas during the tests were 

analyzed as previously described (25-26). 
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 Seven participants were missing ATPmax, four due to inadequate PCr breakdown or 

acidosis and three because of metal deposits or claustrophobia that precluded testing. 

Determination of Muscle Size and Oxidative Capacity of the Quadriceps 

 MRI was used to determine quadriceps volume as previously described (27). Images 

were collected every 3cm from hip to thigh (15–25 slices per participant). Standard stereological 

techniques were used to determine the largest quadriceps muscle cross-sectional area. Oxidative 

capacity of the quadriceps was calculated by multiplying ATPmax by quadriceps volume.  

 

Determination of Fatigability and Measurement of VO2 during Steady State Treadmill Test 

 Fatigability was determined following a 5-minute treadmill walk at 1.6mph (0.72 m/s) 

and 0% grade (15). This speed and duration were selected to simulate the minimal level of 

activity needed to function relatively independently in the community (15). Immediately 

following the walk participants rated their perceived exertion (RPE) using the Borg scale (6-20) 

(28) and were categorized as high fatigability (RPE ≥ 10) or low fatigability (RPE ≤ 9). This cut 

point was established in the Baltimore Longitudinal Study of Aging, which showed that this 

threshold is associated with substantially poorer physical functioning (15). The same test was 

used for each person in order to compare fatigability levels across individuals for the same 

standardized task (5-6). Oxygen consumption was measured during the walk and mean VO2 was 

calculated. Immediately following the test blood lactate levels were assessed by finger stick 

using a portable lactate analyzer.  

 

Statistical Analyses 



8 

 

 The final analytic sample included those with valid ATPmax values (n=30). Means and 

standard deviations or counts and percents were calculated for the entire cohort and separately by 

high and low fatigability. Univariate statistics for predictors, covariates and other variables were 

compared between fatigability groups using t-tests, chi-squared and nonparametric tests where 

appropriate. Least squared age and sex adjusted means for ATPmax and ATPmax·quadriceps 

volume were compared between fatigability groups. Separate multivariate logistic regression 

models were generated to determine the odds of having high fatigability associated with 

increases in the primary predictors of ATPmax and ATPmax·quadriceps volume. Standard 

deviation increases in ATPmax and ATPmax·quadriceps volume were used to generate odds 

ratios for ease of interpretation, as odds ratios using original units resulted in upper limits that 

approached infinity. Analyses were performed using SAS v9.2.  

 

RESULTS 

Demographic Characteristics, Medical History and Physical Function  

 Participants were aged 78.5±5.0 years, 46.7% female, 93.3% white, BMI of 

25.9±2.7kg/m2 (Table 1) and were relatively high functioning with SPPB scores of 10.9±1.4 and 

usual gait-speeds of 1.2±0.2m/s. There were no differences in demographic characteristics and 

medical history by fatigability status (all p > 0.05, Table 1).  However, those with high 

fatigability tended to have a higher prevalence of osteoarthritis compared to those with low 

fatigability (p = 0.06). Those with high fatigability were less physically active (36.8±24.5 vs. 

100.6±83.7min/d moderate activity, p < 0.05) and had slower 400m walk times (383.5±79.3s vs. 

319.5±41.4s, p = 0.03) compared to the low fatigability group. 
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Aerobic Capacity, Muscle Size and Mitochondrial Function  

 Aerobic capacity, muscle size and mitochondrial function, both stratified by fatigability 

status and overall, are shown in Table 2. Mean VO2peak was 22.3±5.9ml/kg/min (range: 7.8-

33.4), ATPmax: 0.52±0.13mM ATP/s (range: 0.30-0.83) and ATPmax•quadriceps volume: 

591.25±203.93mM ATP•mL/s (range: 222.50-965.04).  

 Those with high fatigability had significantly lower VO2peak (18.9±4.4 vs. 

24.4±5.8ml/kg/min, p < 0.05) and ATPmax•quadriceps volume (493.69±203.95 vs. 

656.30±181.19mM ATP•mL/s, p < 0.05, Figure 1) compared to those with low fatigability. 

ATPmax was lower in those with high fatigability compared to low fatigability (0.47±0.12 vs. 

0.55±0.14mM ATP/s, p = 0.09, Table 2); after adjustment for age and sex, the difference became 

significant (0.46±0.03 vs. 0.56±0.03mM ATP/s, p = 0.04). Differences in ATPmax•quadriceps 

volume were slightly attenuated after adjusting for age and sex (519.61±48.55 vs. 

639.02±39.46mM ATP•mL/s, p = 0.07). Mean oxygen consumption during the 5 minute, 

0.72m/s treadmill bout was nearly identical between those with high and low fatigability 

(10.4±1.8 vs. 10.4±1.0ml/kg/min, p > 0.99); however, those with high fatigability required a 

significantly higher proportion of VO2peak to walk at the same speed (58.7±19.4 vs. 

44.9±13.2%, p < 0.05, Table 2). No difference in muscle volume was observed between 

fatigability groups (p = 0.37). Pearson correlations between age, MRS, VO2peak and physical 

activity measures are in Supplemental Table 1. PCr, ATP, Pi, and PDE levels did not differ 

significantly between groups (all p > 0.05, Supplemental Table 2). 

 

Relationship between Fatigability and Mitochondrial Function  
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 One standard deviation increase in ATPmax was associated with 2.94 times lower odds 

of having high fatigability (OR: 0.34, 95% CI: 0.11-1.01, p = 0.05, Table 3) after adjustment for 

age and sex. One standard deviation increase in ATPmax•quadriceps volume was associated with 

2.56 times lower odds of having high fatigability (OR: 0.39, 95% CI: 0.16-0.96, p = 0.04). 

Adjusting for age and sex attenuated this relationship to borderline significance (OR: 0.37, 95% 

CI: 0.13-1.10, p = 0.07, Table 4). The relationships between ATPmax and ATPmax•quadriceps 

volume and fatigability were attenuated after adjustment for physical activity or VO2peak 

(Tables 3 and 4). Similarly quadriceps volume was not significantly associated with fatigability 

univariately (p = 0.35) or after age and sex adjustment (p = 0.98). Finally, adjustment for 

osteoarthritis had no effect on the relationship between either ATPmax or ATPmax•quadriceps 

volume with fatigability.  

 

DISCUSSION 

 The capacity for oxidative ATP synthesis, assessed with 31P MRS (ATPmax and 

ATPmax•muscle volume) was lower in older adults with higher levels of fatigability. To our 

knowledge, this is the first study to have examined the relationship between mitochondrial 

energetics and fatigability in older adults. The inverse association between ATPmax and 

fatigability is consistent with research showing patients with mitochondrial disorders possess 

lower levels of exercise tolerance than controls (29). This is also consistent with data from 

mitochondrial gene ANT1-knockout mice, a model for chronic ATP deficiency, displaying lower 

exercise tolerance and higher fatigability compared to wild type (30). Additionally, ATPmax and 

ATPmax•quadriceps volume are highly related to aerobic capacity in older adults (31), as 

skeletal muscle ATP production is one of the two major components comprising VO2peak, and 
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both decrease with age (13,24). Reduced cardiac output, the other major component of VO2peak, 

may also contribute to higher fatigability independent of ATPmax (32). Nonetheless, impaired 

mitochondrial energy production may be a specific factor that contributes to higher levels of 

fatigability via lower aerobic capacity.  

 Another key finding was that participants with high fatigability had to utilize a higher 

proportion of VO2peak to walk at the same speed compared to those with lower fatigability. 

There are several mechanisms related to mitochondrial function to consider. First, it is possible 

that the source of energy, i.e., mitochondrial and glycolytic, to maintain walking speed was 

related to fatigability, however this was not reflected by blood lactate levels during steady-state 

walking. Second, impaired ATPmax may contribute to a reduced ability to replenish high energy 

phosphates (e.g. PCr) from inorganic phosphate (Pi) (33), leading to a buildup of Pi, which is 

associated with muscle fatigue (34). Additionally, it is possible that when mitochondrial energy 

production approaches maximum capacity or is depleted, a sensation of fatigue is elicited as a 

response (5). For example, Fiser et al. showed that those with slower gait-speed reached a 

significantly higher proportion of VO2peak and had higher RPE (i.e. fatigability) during a sub-

maximal walking test (35). Our data extend these findings by suggesting that mitochondrial 

function may be in the etiologic pathway of fatigability and ultimately slowed gait (16). This is 

also supported by our finding that time to walk 400m was significantly slower in the high 

fatigability group. These data also advance the “Energetic Pathway for Mobility Loss” theory 

postulated by Schrack et al. (36), which states that the maximum capacity for energy (VO2peak) 

decreases with age (13), restricting the availability of energy for everyday activities eventually 

leading to mobility loss in older age. Our data suggest that impaired mitochondrial function may 

contribute to lower availability of energy and VO2peak in older adults, which induces fatigability 
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and may subsequently exacerbate decreased physical activity levels and mobility. The potential 

role of impaired mitochondrial function in age-related mobility loss is supported by the finding 

of Coen et al. in this cohort that lower ATPmax is significantly associated with slower usual-

paced 400m walking time (16). This is bolstered by two other studies showing that mitochondrial 

function is impaired in sedentary compared to active older adults (11) and that lower functioning 

older adults possess greater mitochondrial dysfunction compared to higher functioning (37). 

Further, fatigue is independently associated with lower SPPB scores and slower walking speeds 

(2) as well as a significant predictor of future functional decline (3). Thus, interventions aimed at 

improving mitochondrial energy production may be effective at lowering fatigability (exercise 

tolerance), resulting in sustainable increased physical activity levels and ultimately mobility in 

older adults. In order to establish directionality and causality, it is important to study the 

longitudinal relationships between age, physical activity, VO2peak, fatigability, mitochondrial 

function and mobility.   

 The relationship between ATPmax and fatigability was attenuated after adjustment for 

physical activity. This was not surprising as ATPmax is closely associated with physical activity 

(8) and we did not have a large enough sample to detect an independent relationship. 

Mitochondrial dysfunction may be a contributor to, as well as a consequence of, age-related 

declines in physical activity. For example, mitochondrial dysfunction activates apoptotic 

pathways in skeletal muscle and activation of these pathways may contribute to sarcopenia (38), 

which may result in decreased physical activity levels. However, more recent work shows that 

aged, compared to young, skeletal muscle fibers are more susceptible to mitochondrial mediated 

apoptosis independent of lower oxidative capacity (9). Although decreases in physical activity 

likely initiate the process, lower ATPmax may exacerbate age-related decreases in physical 
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activity by contributing to the age-related loss of VO2peak and exercise tolerance (i.e. higher 

fatigability). Further, increasing ATPmax may be a mechanism by which physical activity can 

lower fatigability. These relationships warrant further longitudinal study.   

 This study had several strengths. Mitochondrial function was measured in vivo, which 

reflects actual mitochondrial energy production in the living skeletal muscle as opposed to 

energy production measured in isolated mitochondria from muscle biopsy (39).  Fatigability was 

measured following a standardized performance test, eliminating any contextual and recall biases 

associated with self-reported fatigability. This study also had limitations. The small sample size 

limited our ability to detect independent relationships. Thus, other benefits of physical activity 

that may lower fatigability could not be separated from higher ATPmax. Although fatigability 

was assessed following a performance test, a certain degree of subjectivity remained as 

participants rated their perceived exertion, as opposed to an observed deterioration in 

performance. This cohort of older adults was also relatively healthy and high functioning, thus it 

remains unclear whether mitochondrial function contributes to fatigability in lower functioning, 

more frail populations. However, it was encouraging that in a relatively homogenous cohort in 

regard to physical function, we saw relationships between ATPmax and fatigability.  

 In conclusion, we provide novel evidence showing that impaired mitochondrial function 

may be implicated in the etiologic pathway of age-related fatigability. Understanding the 

etiology of fatigability is vital to preventing and treating declines in physical function. Impaired 

mitochondrial function may lead to higher levels of fatigability by contributing to lower maximal 

aerobic or reserve capacity. Physical inactivity may initiate the process; however, improving 

mitochondrial function may improve fatigability, which may then increase physical activity 

levels due to improved exercise tolerance. The causal role of impaired mitochondrial function 
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and lower aerobic capacity in age-related fatigability needs to be studied longitudinally and in a 

larger population of older adults across a wider range of physical function. 
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Table 1. Demographic Characteristic by High and Low Fatigability 

 High Fatigability 

 (RPE ≥ 10, n = 12) 

Low Fatigability 

 (RPE ≤ 9, n = 18) 

Entire Cohort 

(n = 30) 

Age, years 79.0 (4.6) 78.2 (5.3) 78.5 (5.0) 

Gender, % female 58.3 (7) 38.9 (7) 46.7 (14) 

Race, % white 100 (12) 88.9 (16) 93.3 (28) 

Body Weight, kg 72.3 (15.6) 71.6 (11.2) 71.9 (12.9) 

Body Mass Index, kg•(m2)-1 26.2 (3.0) 25.7 (2.6) 25.9 (2.7) 

Moderate Physical Activity, 

min•day-1 
36.8 (24.5) 100.6 (83.7)* 71.2 (66.5) 

Smoker, Current/Former 16.7 (2) 44.4 (8) 33.3 (10) 

Alcohol Intake, 6+ drinks•week-1 8.3 (1) 0.0 (0) 3.3 (1) 

Diabetes, yes 0 (0.0) 4.8 (1) 3.3 (1) 
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History of Myocardial Infarction, yes 16.7 (2) 5.46 (1) 10.0 (3) 

History of COPD, yes 8.3 (1) 0.0 (0) 3.3 (1) 

History of Osteoarthritis, yes 50.0 (6) 16.7 (3) 30.0 (9) 

History of Cancer, yes 41.7 (5) 61.1 (11) 53.3 (16) 

CES-D Score 7.7 (3.3) 6.8 (2.8) 7.2 (3.0) 

Usual Gait Speed, m•s-1 1.1 (0.2) 1.3 (0.2) 1.2 (0.2) 

Time to walk 400m, s 383.5 (79.3) 319.5 (41.4)* 343.8 (65.5) 

SPPB Score, 0-12 10.8 (1.5) 10.9 (1.3) 10.9 (1.4) 

Notes: Values are mean ± (SD) or % (n), RPE = rating of perceived exertion, COPD = Chronic 

Obstructive Pulmonary Disorder, CES-D = Center for Epidemiologic Studies Depression Scale 

SPPB = short physical performance battery, * = significant difference between fatigability 

groups, p < 0.05 
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Table 2. Perceived Exertion, Aerobic Capacity, Lactate Levels, 

Mitochondrial Function and Muscle Size by High and Low Fatigability 

 High Fatigability 

 (RPE ≥ 10, n = 12) 

Low 

Fatigability  

(RPE ≤ 9, n = 18) 

Entire Cohort 

(n = 30) 

VO2peak, mL•kg-1•min-1 18.9 (4.4) 24.4 (5.8)* 22.3 (5.9) 

VO2peak, mL•min-1  1326.5 (324.7) 1730.0 (432.5)* 1576.9 (436.9) 

VO2 during steady state walk, 

mL•kg-1•min-1 
10.4 (1.0) 10.4 (1.8) 10.4 (1.5) 

 VO2 during steady state walk, 

mL•min-1 
744.3 (150.4) 738.8 (156.9) 741.0 (151.8) 

% of peak VO2 reached during 

steady state walk 
58.7 (19.4) 44.9 (13.2)* 50.2 (16.9) 
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Blood lactate end of steady 

state walk 
1.81 (1.09) 1.63 (1.02) 1.71 (1.03) 

ATPmax, mM ATP•s-1 0.47 (0.12) 0.55 (0.14) 0.52 (0.13) 

Quadriceps volume, mL 1081.2 (427.1) 1204.1 (307.9) 1154.9 (358.5) 

Notes: Values are mean ± (SD), RPE = rating of perceived exertion, ATP = adenosine 

triphosphate, * = significant difference between fatigability groups, p < 0.05 

 

 

 

 

 

Table 3. Logistic Regression Models for the Association between High Fatigability and 

ATPmax or ATPmax·Quadriceps Volume 

 ATPmax ATPmax·Quadriceps Volume 

Model Odds 

Ratio* 

(95% CI) 

Wald Χ2  

p-value** 

Odds Ratio* 

(95% CI) 

Wald Χ2  

p-value** 

Model 1,unadjusted 
0.45 

(0.20 – 1.17) 
0.11 

0.39 

(0.16 – 0.96) 
0.04 

Model 2† 
0.34 

(0.11 – 1.01) 
0.05 

0.37 

(0.13 – 1.10) 
0.07 

Model 3‡ 0.57 0.35 0.46 0.22 
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(0.18 – 1.84) (0.13 – 1.59) 

Model 4§ 
0.41 

(0.09 – 1.83) 
0.24 

0.62 

(0.14 – 2.71) 
0.53 

Notes: * = per standard deviation increase, † = adjusted for age and sex, ‡ = adjusted for age, sex 

and VO2peak, § = adjusted for age, sex and physical activity, **p-value corresponds to the 

relationship between ATPmax or ATPmax·Quadriceps Volume and Fatigability respectively.  
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Figure 1. Oxidative Capacity of the Quadriceps by Low and High Fatigability 
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Captions for Illustrations 

Figure 1. 

Maximal mitochondrial ATP production defined as phosphocreatine recovery in the quadriceps, 

following an acute bout of exercise, measured by 31P magnetic resonance spectroscopy, 

multiplied by quadriceps volume. Fatigability was defined using Rating of Perceived Exertion 

(RPE, 6-20) after a 5-minute treadmill walk at 0.72m/s. High fatigability =  RPE ≥10 and low 

fatigability = RPE ≤ 9. 
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