21,104 research outputs found

    Coherent imaging of a pure phase object with classical incoherent light

    Get PDF
    By using the ghost imaging technique, we experimentally demonstrate the reconstruction of the diffraction pattern of a {\em pure phase} object by using the classical correlation of incoherent thermal light split on a beam splitter. The results once again underline that entanglement is not a necessary feature of ghost imaging. The light we use is spatially highly incoherent with respect to the object (≈2ÎŒ\approx 2 \mum speckle size) and is produced by a pseudo-thermal source relying on the principle of near-field scattering. We show that in these conditions no information on the phase object can be retrieved by only measuring the light that passed through it, neither in a direct measurement nor in a Hanbury Brown-Twiss (HBT) scheme. In general, we show a remarkable complementarity between ghost imaging and the HBT scheme when dealing with a phase object.Comment: 13 pages, 11 figures. Published in Physical Review A. Replaced version fixes some problems with Figs. 1, 4 and 1

    Anisotropic multi-gap superfluid states in nuclear matter

    Full text link
    It is shown that under changing density or temperature a nucleon Fermi superfluid can undergo a phase transition to an anisotropic superfluid state, characterized by nonvanishing gaps in pairing channels with singlet-singlet (SS) and triplet-singlet (TS) pairing of nucleons (in spin and isospin spaces). In the SS pairing channel nucleons are paired with nonzero orbital angular momentum. Such two-gap states can arise as a result of branching from the one-gap solution of the self-consistent equations, describing SS or TS pairing of nucleons, that depends on the relationship between SS and TS coupling constants at the branching point. The density/temperature dependence of the order parameters and the critical temperature for transition to the anisotropic two-gap state are determined in a model with the SkP effective interaction. It is shown that the anisotropic SS-TS superfluid phase corresponds to a metastable state in nuclear matter.Comment: Prepared with RevTeX4, 7p., 5 fi

    Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint

    Full text link
    In this paper it was proved that the quantum relative entropy D(σ∄ρ)D(\sigma \| \rho) can be asymptotically attained by Kullback Leibler divergences of probabilities given by a certain sequence of POVMs. The sequence of POVMs depends on ρ\rho, but is independent of the choice of σ\sigma.Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment for Quantum Relative Entropy

    Experimental evidence of high-resolution ghost imaging and ghost diffraction with classical thermal light

    Get PDF
    High-resolution ghost image and ghost diffraction experiments are performed by using a single source of thermal-like speckle light divided by a beam splitter. Passing from the image to the diffraction result solely relies on changing the optical setup in the reference arm, while leaving untouched the object arm. The product of spatial resolutions of the ghost image and ghost diffraction experiments is shown to overcome a limit which was formerly thought to be achievable only with entangled photons.Comment: 5 pages, 4 figure

    Model-independent measurements of the sodium magneto-optical trap's excited-state population

    Get PDF
    We present model-independent measurements of the excited-state population of atoms in a sodium (Na) magneto-optical trap (MOT) using a hybrid ion-neutral trap composed of a MOT and a linear Paul trap (LPT). We photoionize excited Na atoms trapped in the MOT and use two independent methods to measure the resulting ions: directly by trapping them in our LPT, and indirectly by monitoring changes in MOT fluorescence. By measuring the ionization rate via these two independent methods, we have enough information to directly determine the population of MOT atoms in the excited-state. The resulting measurement reveals that there is a range of trapping-laser intensities where the excited-state population of atoms in our MOT follows the standard two-level model intensity-dependence. However, an experimentally determined effective saturation intensity must be used instead of the theoretically predicted value from the two-level model. We measured the effective saturation intensity to be Ise=22.9(3) mW/cm2I_\mathrm{se}=22.9(3)\:\textrm{mW}/\textrm{cm}^2 for the type-I Na MOT and Ise=48.9(7)  mW/cm2I_\mathrm{se}=48.9(7)\;\textrm{mW}/\textrm{cm}^2 for the type-II Na MOT, approximately 1.7 and 3.6 times the theoretical estimate, respectively. Lastly, at large trapping-laser intensities, our experiment reveals a clear departure from the two-level model at a critical intensity that we believe is due to a state-mixing effect, whose critical intensity can be determined by a simple power broadening model.Comment: 10 pages, 8 figure

    The embedding structure and the shift operator of the U(1) lattice current algebra

    Get PDF
    The structure of block-spin embeddings of the U(1) lattice current algebra is described. For an odd number of lattice sites, the inner realizations of the shift automorphism areclassified. We present a particular inner shift operator which admits a factorization involving quantum dilogarithms analogous to the results of Faddeev and Volkov.Comment: 14 pages, Plain TeX; typos and a terminological mishap corrected; version to appear in Lett.Math.Phy

    The stationary phase point method for transitional scattering: diffractive radio scintillation for pulsar

    Get PDF
    The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N≫\gg1), via transitional scattering regime (N∌\sim2,3), we find that the modulation index of intensity experiences the monotonically increasing from 0 to 1 with the scattering strength, characterized by the ratio of Fresnel scale \rf to diffractive scale \rdiff.Comment: Hanas Meeting paper, appear in ChJAA, 2006, 6, Su

    RankPL: A Qualitative Probabilistic Programming Language

    Full text link
    In this paper we introduce RankPL, a modeling language that can be thought of as a qualitative variant of a probabilistic programming language with a semantics based on Spohn's ranking theory. Broadly speaking, RankPL can be used to represent and reason about processes that exhibit uncertainty expressible by distinguishing "normal" from" surprising" events. RankPL allows (iterated) revision of rankings over alternative program states and supports various types of reasoning, including abduction and causal inference. We present the language, its denotational semantics, and a number of practical examples. We also discuss an implementation of RankPL that is available for download
    • 

    corecore