22,009 research outputs found

    Finite momentum condensation in a pumped microcavity

    Full text link
    We calculate the absorption spectra of a semiconductor microcavity into which a non-equilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation, and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.Comment: 7 pages, 4 figures, updated to accepted versio

    Construction of localized wave functions for a disordered optical lattice and analysis of the resulting Hubbard model parameters

    Full text link
    We propose a method to construct localized single particle wave functions using imaginary time projection and thereby determine lattice Hamiltonian parameters. We apply the method to a specific disordered potential generated by an optical lattice experiment and calculate for each instance of disorder, the equivalent lattice model parameters. The probability distributions of the Hubbard parameters are then determined. Tests of localization and eigen-energy convergence are examined.Comment: 10 pages, 16 figure

    Reconnection in Marginally Collisionless Accretion Disk Coronae

    Full text link
    We point out that a conventional construction placed upon observations of accreting black holes, in which their nonthermal X-ray spectra are produced by inverse comptonization in a coronal plasma, suggests that the plasma is marginally collisionless. Recent developments in plasma physics indicate that fast reconnection takes place only in collisionless plasmas. As has recently been suggested for the Sun's corona, such marginal states may result from a combination of energy balance and the requirements of fast magnetic reconnection.Comment: Revised in response to referee. Accepted ApJ. 11 pp., no figures. Uses aastex 5.0

    Coherent Backscattering of Light with Nonlinear Atomic Scatterers

    Full text link
    We study coherent backscattering of a monochromatic laser by a dilute gas of cold two-level atoms in the weakly nonlinear regime. The nonlinear response of the atoms results in a modification of both the average field propagation (nonlinear refractive index) and the scattering events. Using a perturbative approach, the nonlinear effects arise from inelastic two-photon scattering processes. We present a detailed diagrammatic derivation of the elastic and inelastic components of the backscattering signal both for scalar and vectorial photons. Especially, we show that the coherent backscattering phenomenon originates in some cases from the interference between three different scattering amplitudes. This is in marked contrast with the linear regime where it is due to the interference between two different scattering amplitudes. In particular we show that, if elastically scattered photons are filtered out from the photo-detection signal, the nonlinear backscattering enhancement factor exceeds the linear barrier two, consistently with a three-amplitude interference effect.Comment: 18 pages, 13 figures, submitted to Phys. Rev.

    Structure of the vacuum states in the presence of isovector and isoscalar pairing correlations

    Get PDF
    The long standing problem of proton-neutron pairing and, in particular, the limitations imposed on the solutions by the available symmetries, is revisited. We look for solutions with non-vanishing expectation values of the proton, the neutron and the isoscalar gaps. For an equal number of protons and neutrons we find two solutions where the absolute values of proton and neutrons gaps are equal but have the same or opposite sign. The behavior and structure of these solutions differ for spin saturated (single l-shell) and spin unsaturared systems (single j-shell). In the former case the BCS results are checked against an exact calculation.Comment: 19 pages, 5 postscript figure

    The stationary phase point method for transitional scattering: diffractive radio scintillation for pulsar

    Get PDF
    The stationary phase point (SPP) method in one-dimensional case is introduced to treat the diffractive scintillation. From weak scattering, where the SPP number N=1, to strong scattering (N\gg1), via transitional scattering regime (N\sim2,3), we find that the modulation index of intensity experiences the monotonically increasing from 0 to 1 with the scattering strength, characterized by the ratio of Fresnel scale \rf to diffractive scale \rdiff.Comment: Hanas Meeting paper, appear in ChJAA, 2006, 6, Su

    Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint

    Full text link
    In this paper it was proved that the quantum relative entropy D(σρ)D(\sigma \| \rho) can be asymptotically attained by Kullback Leibler divergences of probabilities given by a certain sequence of POVMs. The sequence of POVMs depends on ρ\rho, but is independent of the choice of σ\sigma.Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment for Quantum Relative Entropy

    Efficient Quantum Tensor Product Expanders and k-designs

    Full text link
    Quantum expanders are a quantum analogue of expanders, and k-tensor product expanders are a generalisation to graphs that randomise k correlated walkers. Here we give an efficient construction of constant-degree, constant-gap quantum k-tensor product expanders. The key ingredients are an efficient classical tensor product expander and the quantum Fourier transform. Our construction works whenever k=O(n/log n), where n is the number of qubits. An immediate corollary of this result is an efficient construction of an approximate unitary k-design, which is a quantum analogue of an approximate k-wise independent function, on n qubits for any k=O(n/log n). Previously, no efficient constructions were known for k>2, while state designs, of which unitary designs are a generalisation, were constructed efficiently in [Ambainis, Emerson 2007].Comment: 16 pages, typo in references fixe

    Study of muons near shower cores at sea level using the E594 neutrino detector

    Get PDF
    The E594 neutrino detector has been used to study the lateral distribution of muons of energy 3 GeV near shower cores. The detector consists of a 340 ton fine grain calorimeter with 400,000 cells of flash chamber and dimensions of 3.7 m x 20 m x 3.7 m (height). The average density in the calorimeter is 1.4 gm/sq cm, and the average Z is 21. The detector was triggered by four 0.6 sq m scintillators placed immediately on the top of the calorimeter. The trigger required at least two of these four counters. The accompanying extensive air showers (EAS) was sampled by 14 scintillation counters located up to 15 m from the calorimeter. Several off line cuts have been applied to the data. Demanding five particles in at least two of the trigger detectors, a total of 20 particles in all of them together, and an arrival angle for the shower 450 deg reduced the data sample to 11053 events. Of these in 4869 cases, a computer algorithm found at least three muons in the calorimeter
    corecore