895 research outputs found

    On the contrasting spin dynamics of La2−xSrxCuO4La_{2-x}Sr_xCuO_4, Nd2−xCexCuO4Nd_{2-x}Ce_xCuO_4 and YBa2Cu3O6+xYBa_2Cu_3O_{6+x} near half filling

    Full text link
    We present simple calculations which show that incommensurability upon doping and the width of the magnetically ordered phase in Mott-Hubbard insulators depend strongly on the location of the hole/electron pockets in the Brillouin zone. For LaSrCuOLaSrCuO systems, we found the pockets at (±π/2,±π/2)(\pm \pi/2,\pm \pi/2), in which case the corrections to the antiferromagnetic spin stiffness grow with doping and destroy the commensurate antiferromagnetic ordering already at a very small doping. On the other hand, in NdCeCuONdCeCuO, the hole pockets are located at (π,0)(\pi,0) and the symmetry related points, in which case the corrections to the stiffness scale linearly with the density of carriers and do not destroy commensurate spin ordering. For YBCuOYBCuO, systems the situation is less certain, but our results favor hole pockets at (π/2,π/2)(\pi/2,\pi/2). We also discuss briefly the tendency towards phase separation.Comment: 18 pages, LaTe

    Studies on virus diseases of the grapevine in California

    Get PDF
    The principal symptoms that characterize the virus diseases of grapevines found in vineyards of California are described. The diseases are: PIERCE's disease, fanleaf, yellow mosaic, vein banding, leafroll, yellow vein, asteroid mosaic, and corky bark. It is the first report of the graft transmission of corky bark and an unidentified virus that produces fleck in Vitis ruprestris var. St. George.All of the grape viruses can be transmitted by one or more grafting methods, but chip-bud grafting has proved to be simple and effective. The soilborne viruses that cause fanleaf, yellow mosaic, and vein banding all mechanically sap-transmit to, and produce very similar, mostly indistinguishable symptoms in different herbaceous hosts. The GYVV (grape yellow vein virus) will also sap-transmit to several different herbs, yet the symptoms differ from those induced by the soil-borne viruses.Xiphinema index transmitted the GFV (grape fanleaf virus) from roots of sap-inoculated Chenopodium amaranticolor to roots of V. rupestris var. St. George. Evidence shows that X. index will also transmit the GYMV (grape yellow mosaic virus) from vine to vine. Evidence indicates that fanleaf, yellow mosaic, and vein banding are distinct diseases with definite and consistent symptoms, although apparently caused by strains of the same virus.Results of these tests to control the soil-borne grape viruses by injection of chemicals into the soil show that carbon bisulfide and methyl bromide are the most effective, though none of the chemicals used give complete control

    A reliable Pade analytical continuation method based on a high accuracy symbolic computation algorithm

    Full text link
    We critique a Pade analytic continuation method whereby a rational polynomial function is fit to a set of input points by means of a single matrix inversion. This procedure is accomplished to an extremely high accuracy using a novel symbolic computation algorithm. As an example of this method in action we apply it to the problem of determining the spectral function of a one-particle thermal Green's function known only at a finite number of Matsubara frequencies with two example self energies drawn from the T-matrix theory of the Hubbard model. We present a systematic analysis of the effects of error in the input points on the analytic continuation, and this leads us to propose a procedure to test quantitatively the reliability of the resulting continuation, thus eliminating the black magic label frequently attached to this procedure.Comment: 11 pages, 8 eps figs, revtex format; revised version includes reference to anonymous ftp site containing example codes (MapleVr5.1 worksheets) displaying the implementation of the algorithm, including the padematinv.m library packag

    Analyzing the success of T-matrix diagrammatic theories in representing a modified Hubbard model

    Full text link
    We present a systematic study of various forms of renormalization that can be applied in the calculation of the self-energy of the Hubbard model within the T-matrix approximation. We compare the exact solutions of the attractive and repulsive Hubbard models, for linear chains of lengths up to eight sites, with all possible taxonomies of the T-matrix approximation. For the attractive Hubbard model, the success of a minimally self-consistent theory found earlier in the atomic limit (Phys. Rev. B 71, 155111 (2005)) is not maintained for finite clusters unless one is in the very strong correlation limit. For the repulsive model, in the weak correlation limit at low electronic densities -- that is, where one would expect a self-consistent T-matrix theory to be adequate -- we find the fully renormalized theory to be most successful. In our studies we employ a modified Hubbard interaction that eliminates all Hartree diagrams, an idea which was proposed earlier (Phys. Rev. B 63, 035104 (2000)).Comment: Includes modified discussion of 1st-order phase transition. Accepted for publication in J. Phys.: Condensed Matte

    Doping dependence of the Neel temperature in Mott-Hubbard antiferromagnets: Effect of vortices

    Full text link
    The rapid destruction of long-range antiferromagnetic order upon doping of Mott-Hubbard antiferromagnetic insulators is studied within a generalized Berezinskii-Kosterlitz-Thouless renormalization group theory in accordance with recent calculations suggesting that holes dress with vortices. We calculate the doping-dependent Neel temperature in good agreement with experiments for high-Tc cuprates. Interestingly, the critical doping where long-range order vanishes at zero temperature is predicted to be xc ~ 0.02, independently of any energy scales of the system.Comment: 4 pages with 3 figures included, minor revisions, to be published in PR

    Polaron and bipolaron formation in the Hubbard-Holstein model: role of next-nearest neighbor electron hopping

    Full text link
    The influence of next-nearest neighbor electron hopping, t′t^{\prime}, on the polaron and bipolaron formation in a square Hubbard-Holstein model is investigated within a variational approach. The results for electron-phonon and electron-electron correlation functions show that a negative value of t′t^{\prime} induces a strong anisotropy in the lattice distortions favoring the formation of nearest neighbor intersite bipolaron. The role of t′t^{\prime}, electron-phonon and electron-electron interactions is briefly discussed in view of the formation of charged striped domains.Comment: 4 figure

    Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors

    Full text link
    We propose a model for high-Tc_{c} superconductors, valid for 0≤δ≤δSC0\leq\delta\leq\delta_{SC}, that includes both the spin fluctuations of the Cu++^{++} magnetic ions and of the O−−^{--} doped holes. Spin-charge separation is taken into account with the charge of the doped holes being associated to quantum skyrmion excitations (holons) of the Cu++^{++} spin background. The holon effective interaction potential is evaluated as a function of doping, indicating that Cooper pair formation is determined by the competition between the spin fluctuations of the Cu++^{++} background and of spins of the O−−^{--} doped holes (spinons). The superconducting transition occurs when the spinon fluctuations dominate, thereby reversing the sign of the interaction. At this point (δ=δSC\delta = \delta_{SC}), the theory is supersymmetric at short distances and, as a consequence, the leading order results are not modified by radiative corrections. The critical doping parameter for the onset of superconductivity at T=0 is obtained and found to be a universal constant determined by the shape of the Fermi surface. Our theoretical values for δSC\delta_{SC} are in good agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure

    Two-hole problem in the t-J model: A canonical transformation approach

    Full text link
    The t-J model in the spinless-fermion representation is studied. An effective Hamiltonian for the quasiparticles is derived using canonical transformation approach. It is shown that the rather simple form of the transformation generator allows to take into account effect of hole interaction with the short-range spin waves and to describe the single-hole groundstate. Obtained results are very close to ones of the self-consistent Born approximation. Further accounting for the long-range spin-wave interaction is possible on the perturbative basis. Both spin-wave exchange and an effective interaction due to minimization of the number of broken antiferromagnetic bonds are included in the effective quasiparticle interaction. Two-hole bound state problem is solved using Bethe-Salpeter equation. The only d-wave bound state is found to exist in the region of 1< (t/J) <5. Combined effect of the pairing interactions of both types is important to its formation. Discussion of the possible relation of the obtained results to the problem of superconductivity in real systems is presented.Comment: 19 pages, RevTeX, 12 postscript figure

    Charge Segregation, Cluster Spin-Glass and Superconductivity in La1.94Sr0.06CuO4

    Full text link
    A 63Cu and 139La NMR/NQR study of superconducting (Tc=7 K) La1.94Sr0.06CuO4 single crystal is reported. Coexistence of spin-glass and superconducting phases is found below ~5 K from 139La NMR relaxation. 63Cu and 139La NMR spectra show that, upon cooling, CuO2 planes progressively separate into two magnetic phases, one of them having enhanced antiferromagnetic correlations. These results establish the AF-cluster nature of the spin-glass. We discuss how this phase can be related to the microsegregation of mobile holes and to the possible pinning of charge-stripes.Comment: 4 pages. Modified manuscript with clarification
    • …
    corecore