29 research outputs found

    Cyanogenesis of Wild Lima Bean (Phaseolus lunatus L.) Is an Efficient Direct Defence in Nature

    Get PDF
    In natural systems plants face a plethora of antagonists and thus have evolved multiple defence strategies. Lima bean (Phaseolus lunatus L.) is a model plant for studies of inducible indirect anti-herbivore defences including the production of volatile organic compounds (VOCs) and extrafloral nectar (EFN). In contrast, studies on direct chemical defence mechanisms as crucial components of lima beans' defence syndrome under natural conditions are nonexistent. In this study, we focus on the cyanogenic potential (HCNp; concentration of cyanogenic glycosides) as a crucial parameter determining lima beans' cyanogenesis, i.e. the release of toxic hydrogen cyanide from preformed precursors. Quantitative variability of cyanogenesis in a natural population of wild lima bean in Mexico was significantly correlated with missing leaf area. Since existing correlations do not by necessity mean causal associations, the function of cyanogenesis as efficient plant defence was subsequently analysed in feeding trials. We used natural chrysomelid herbivores and clonal lima beans with known cyanogenic features produced from field-grown mother plants. We show that in addition to extensively investigated indirect defences, cyanogenesis has to be considered as an important direct defensive trait affecting lima beans' overall defence in nature. Our results indicate the general importance of analysing ‘multiple defence syndromes’ rather than single defence mechanisms in future functional analyses of plant defences

    Cyanogenic polymorphism as an indicator of genetic diversity in the rare species Eucalyptus yarraensis (Myrtaceae)

    No full text
    C1 - Journal Articles RefereedThe rare Australian tree Eucalyptus yarraensis Maiden & Cambage is cyanogenic, a quantitative trait potentially indicative of genetic diversity. Cyanogenic plants are capable of releasing cyanide from endogenous cyanide-containing compounds. Cyanide is toxic or deterrent to generalist or non-adapted specialist herbivores. Consequently, cyanogenic plants are afforded an effective means of chemical defense. In this paper we characterize quantitative variation in cyanogenic capability, known as cyanogenic polymorphism, in E. yarraensis for the first time. We show that the cyanogenic glucoside prunasin (R-mandelonitrile-β-D-glucoside) is the only cyanogenic compound in E. yarraensis foliage. We also show that two natural populations of E. yarraensis display extensive intra- and inter-population variation in foliar prunasin concentration. The high prunasin concentrations reported in this paper represent the highest yet recorded for mature eucalypt leaves. The cyanogenic variation could not be attributed to measured physical and chemical parameters, supporting the hypothesis that the variation is genetically based. A preliminary progeny trial also supports this hypothesis, with narrow sense heritability estimated at 1.17 from three half-sibling families. The variation in cyanogenic capability may be a useful tool in the development of a conservation strategy for the species

    Growth cost and ontogenetic expression patterns of defence in cyanogenic Eucalyptus spp.

    No full text
    C1 - Journal Articles Referee

    Plant traits linked to field-scale flammability metrics in prescribed burns in Eucalyptus forest

    Get PDF
    Vegetation is a key determinant of wildfire behaviour at field scales as it functions as fuel. Past studies in the laboratory show that plant flammability, the ability of plants to ignite and maintain combustion, is a function of their traits. However, the way the traits of individual plants combine in a vegetation community to affect field flammability has received little attention. This study aims to bridge the gap between the laboratory and field by linking plant traits to metrics of field-scale flammability. Across three prescribed burns, in Eucalyptus-dominated damp and dry forest, we measured pre-burn plant species abundance and post-burn field flammability metrics (percentage area burnt, char and scorch height). For understory species with dominant cover-abundance, we measured nine traits that had been demonstrated to influence flammability in the laboratory. We used fourth-corner ordination to evaluate covariation between the plant traits, species abundance and flammability. We found that several traits covaried at the species level. In some instances, these traits (e.g. specific leaf area and bulk density) could have cumulative effects on the flammability of a species while in other instances (e.g. moisture and specific leaf area) they may have counteractive effects, assuming trait effects on flammability are akin to previous research. At field scales, species with similar traits tended to co-occur, suggesting that the effects of individual traits accumulate within a plant community. Fourth-corner analyses found the trait-field flammability relationship to be statistically significant. Traits significantly associated with increasing field flammability metrics were: bulk density (negatively associated) and hydrocarbon quantity, specific leaf area and surface area to volume ratio (all positively associated). Our study demonstrates that some traits known to influence flammability in the laboratory can be associated with field-scale flammability metrics. Further research is needed to isolate the contributions of individual traits to understand how species composition drives forest flammability

    Foliar Essential Oil Glands of Eucalyptus Subgenus Eucalyptus (Myrtaceae) Are a Rich Source of Flavonoids and Related Non-Volatile Constituents

    Get PDF
    The sub-dermal secretory cavities (glands) embedded within the leaves of Eucalyptus (Myrtaceae) were once thought to be the exclusive repositories of monoterpene and sesquiterpene oils. Recent research has debunked this theory and shown that abundant non-volatile compounds also occur within foliar glands. In particular, glands of four species in subgenus Eucalyptus contain the biologically active flavanone pinocembrin. Pinocembrin shows great promise as a pharmaceutical and is predominantly plant-sourced, so Eucalyptus could be a potential commercial source of such compounds. To explore this we quantified and assessed the purity of pinocembrin in glands of 11 species of E. subg. Eucalyptus using Electro-Spray Ionisation Liquid Chromatography Mass Spectrometry of acetonitrile extracts and Gas Chromatography Mass Spectrometry analyses of hexane extracts of isolated glands which were free from other leaf tissues. Our results showed that the glands of subgenus Eucalyptus contain numerous flavanones that are structurally related to pinocembrin and often present in much greater abundance. The maximum concentration of pinocembrin was 2 mg g-1 dry leaf found in E. stellulata, whereas that of dimethylpinocembrin (5,7-dimethoxyflavanone) was 10 mg g-1 in E. oreades and that of pinostrobin (5-hydroxy-7-methoxyflavanone) was 12 mg g-1 in E. nitida. We also found that the flavanones are exclusively located within the foliar glands rather than distributed throughout leaf tissues. The flavanones differ from the non-methylated pinocembrin in the degree and positions of methylation. This finding is particularly important given the attractiveness of methylated flavonoids as pharmaceuticals and therapeutics. Another important finding was that glands of some members of the subgenus also contain flavanone O-glucosides and flavanone-β-triketone conjugates. In addition, glands contain free β-triketones, β-triketone heterodimers and chromone C-glucosides. Therefore, the foliar glands of this taxonomically distinct group of plants are a rich source of a range of flavonoids and other biologically active compounds with great commercial potential

    Elucidation of the betalainic chromoalkaloid profile of Pilosocereus catingicola (GĂźrke) Byles & Rowley subsp. salvadorensis (Werderm.) Zappi (Cactaceae) from ParaĂ­ba, Brazil

    Get PDF
    The cacti are important plant genetic resources of the Brazilian semiarid region, with potential for the extraction of bioactive compounds such as flavonoids and alkaloids. The objective of this research was to characterize and quantify the chemical constituents of Pilosocereus catingicola (Gßrke) Byles & Rowley subsp. salvadorensis (Werderm.) Zappi occurring in caatinga in the Westland of Paraíba, Brazil. We collected roots, stems and fruit of plants growing in populations at Arara, Areial and Boa Vista. Chemical characterization of the different plant tissues showed that roots and stems of P. catingicola contained steroids, flavonoids and saponins whereas fruit was dominated by high levels of betalainic chromoalkaloids (betalains). Tests performed to optimize extraction of betalains from P. catingicola fruit showed highest yields were from freeze-dried nuts extracted for 95 min, with the crude extract stored at -20°C for a maximum of 48 h. The betalains of all fruit samples were dominated by betacyanins with much lower amounts of betaxanthins observed in each population. Numerous betacyanin constituents were detected in fruit extracts, with the key constituents identified as betanin and phyllocactin. The Arara population yielded relatively more betaxanthins compared to plants from the Areial and Boa Vista regions

    Huperzine alkaloids from Australasian and southeast Asian Huperzia

    No full text
    Context: The pharmaceutical alkaloid huperzine A (HupA), currently used in herbal supplements and medicines worldwide, is predominantly sourced from the Chinese lycopod Huperzia serrata (Thunb. ex Murray) Trev. (Lycopodiaceae), which on average contains only 0.08mg HupA g−1 dry weight, and is experiencing a rapid decline in China due to over-harvesting.\ud \ud Objective: To find a high-yielding, natural source of HupA and/or the related huperzine B (HupB) that could potentially be used as the starting material in a commercial propagation program.\ud \ud Materials and methods: We surveyed 17 Huperzia species (15 indigenous to Australia and southeast Asia) for their foliar HupA and HupB concentrations. We also studied intra-specific variation for the huperzines in four species that were available in sufficient numbers, and determined tissue-specific accumulation in larger specimens.\ud \ud Results: HupA was detected in 11 Australasian and southeast Asian species, with eight also containing HupB, albeit at much lower concentrations. A H. elmeri (Herter) Holub plant from the Philippines had one of the highest HupA concentrations recorded (1.01mg g−1 dry wt) and it also had the highest HupB content of all plants surveyed (0.34mg g−1 dry wt). Intra-specific HupA and HupB concentrations were extremely variable, and at the intra-plant level, reproductive strobili were found to accumulate the highest HupA concentrations.\ud \ud Discussion and conclusion: Select Huperzia species from Australia and southeast Asia have potential as the starting material for establishing commercial HupA plantations, but the high intra-specific variability observed suggests that detailed screening is needed to isolate high huperzine-yielding individuals
    corecore