36 research outputs found

    Somatostatin 2 receptors in the spinal cord tonically restrain thermogenic, cardiac and other sympathetic outflows

    Get PDF
    The anatomical and functional characterization of somatostatin (SST) and somatostatin receptors (SSTRs) within the spinal cord have been focused in the dorsal horn, specifically in relation to sensory afferent processing. However, SST is also present within the intermediolateral cell column (IML), which contains sympathetic preganglionic neurons (SPN). We investigated the distribution of SSTR2 within the thoracic spinal cord and show that SSTR2A and SSTR2B are expressed in the dorsal horn and on SPN and non-SPN in or near the IML. The effects of activating spinal SSTR and SSTR2 were sympathoinhibition, hypotension, bradycardia, as well as decreases in interscapular brown adipose tissue temperature and expired CO2, in keeping with the well-described inhibitory effects of activating SSTR receptors. These data indicate that spinal SST can decrease sympathetic, cardiovascular and thermogenic activities. Unexpectedly blockade of SSTR2 revealed that SST tonically mantains sympathetic, cardiovascular and thermogenic functions, as activity in all measured parameters increased. In addition, high doses of two antagonists evoked biphasic responses in sympathetic and cardiovascular outflows where the initial excitatory effects were followed by profound but transient falls in sympathetic nerve activity, heart rate and blood pressure. These latter effects, together with our findings that SSTR2A are expressed on GABAergic, presumed interneurons, are consistent with the idea that SST2R tonically influence a diffuse spinal GABAergic network that regulates the sympathetic cardiovascular outflow. As described here and elsewhere the source of tonically released spinal SST may be of intra- and/or supra-spinal origin

    Polysialic acid regulates sympathetic outflow by facilitating information transfer within the nucleus of the solitary tract

    Get PDF
    Expression of the large extracellular glycan, polysialic acid (polySia), is restricted in the adult, to brain regions exhibiting high levels of plasticity or remodeling, including the hippocampus, prefrontal cortex, and the nucleus of the solitary tract (NTS). The NTS, located in the dorsal brainstem, receives constant viscerosensory afferent traffic as well as input from central regions controlling sympathetic nerve activity, respiration, gastrointestinal functions, hormonal release, and behavior. Our aims were to determine the ultrastructural location of polySia in the NTS and the functional effects of enzymatic removal of polySia, both in vitro and in vivo polySia immunoreactivity was found throughout the adult rat NTS. Electron microscopy demonstrated polySia at sites that influence neurotransmission: the extracellular space, fine astrocytic processes, and neuronal terminals. Removing polySia from the NTS had functional consequences. Whole-cell electrophysiological recordings revealed altered intrinsic membrane properties, enhancing voltage-gated K+ currents and increasing intracellular Ca2+ Viscerosensory afferent processing was also disrupted, dampening low-frequency excitatory input and potentiating high-frequency sustained currents at second-order neurons. Removal of polySia in the NTS of anesthetized rats increased sympathetic nerve activity, whereas functionally related enzymes that do not alter polySia expression had little effect. These data indicate that polySia is required for the normal transmission of information through the NTS and that changes in its expression alter sympathetic outflow. polySia is abundant in multiple but discrete brain regions, including sensory nuclei, in both the adult rat and human, where it may regulate neuronal function by mechanisms identified here.SIGNIFICANCE STATEMENT All cells are coated in glycans (sugars) existing predominantly as glycolipids, proteoglycans, or glycoproteins formed by the most complex form of posttranslational modification, glycosylation. How these glycans influence brain function is only now beginning to be elucidated. The adult nucleus of the solitary tract has abundant polysialic acid (polySia) and is a major site of integration, receiving viscerosensory information which controls critical homeostatic functions. Our data reveal that polySia is a determinant of neuronal behavior and excitatory transmission in the nucleus of the solitary tract, regulating sympathetic nerve activity. polySia is abundantly expressed at distinct brain sites in adult, including major sensory nuclei, suggesting that sensory transmission may also be influenced via mechanisms described here. These findings hint at the importance of elucidating how other glycans influence neural function.Phillip Bokiniec, Shila Shahbazian, Stuart J. McDougall, Britt A. Berning, Delfine Cheng, Ida J. Llewellyn-Smith ... et al

    Materiality, health informatics and the limits of knowledge production

    Get PDF
    © IFIP International Federation for Information Processing 2014 Contemporary societies increasingly rely on complex and sophisticated information systems for a wide variety of tasks and, ultimately, knowledge about the world in which we live. Those systems are central to the kinds of problems our systems and sub-systems face such as health and medical diagnosis, treatment and care. While health information systems represent a continuously expanding field of knowledge production, we suggest that they carry forward significant limitations, particularly in their claims to represent human beings as living creatures and in their capacity to critically reflect on the social, cultural and political origins of many forms of data ‘representation’. In this paper we take these ideas and explore them in relation to the way we see healthcare information systems currently functioning. We offer some examples from our own experience in healthcare settings to illustrate how unexamined ideas about individuals, groups and social categories of people continue to influence health information systems and practices as well as their resulting knowledge production. We suggest some ideas for better understanding how and why this still happens and look to a future where the reflexivity of healthcare administration, the healthcare professions and the information sciences might better engage with these issues. There is no denying the role of health informatics in contemporary healthcare systems but their capacity to represent people in those datascapes has a long way to go if the categories they use to describe and analyse human beings are to produce meaningful knowledge about the social world and not simply to replicate past ideologies of those same categories

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Upregulation of angiotensin AT1 receptor and intracellular kinase gene expression in hypertensive rats

    No full text
    1. Activation of angiotensin II AT1 receptors (AT1R) stimulates catecholamine systems within both central and peripheral tissues that are associated with blood pressure control. In the present study, we sought to determine whether the hypertensive phenotype of the spontaneously hypertensive rat (SHR) is associated with changes in AT1R gene expression and whether gene expression of downstream signalling molecules was coupled to catecholamine gene expression, both in key brainstem nuclei and in peripheral sites implicated in cardiovascular control. 2. Gene expression levels of AT1R, extracellular signal-regulated kinase (ERK) 1 and 2 and phosphatidylinositol 3-kinase (PI3-K) were quantified in Wistar-Kyoto (WKY) rats and SHR. Messenger RNA expression levels were quantified using real time reverse transcription–polymerase chain reaction. In addition, we investigated whether there was a relationship between gene expression and systolic blood pressure. 3. The gene expression levels of AT1R, ERK2 and PI3-K were significantly higher in the paraventricular nucleus of the hypothalamus (4.12-, 1.40- and 1.38-fold, respectively), rostral ventrolateral medulla (2.71-, 1.33- and 2.73-fold, respectively), spinal cord (30.5-, 2.72- and 1.53-fold, respectively), adrenal medulla (1.68-, 1.55- and 1.76-fold, respectively) and coeliac ganglion (1.39-, 1.35- and 1.12-fold, respectively) in SHR compared with WKY rats. There was no significant difference in the level of ERK1 gene expression between the two strains. The gene expression levels of AT1R and ERK2 were positively correlated with blood pressure in all central nervous tissues investigated in the SHR, but not in WKY rats. Gene expression levels of the AT1R in the coeliac ganglion and adrenal medulla were also positively correlated with increased systolic blood pressure. 4. The present data suggest that a defect in AT1R expression (that may further alter downstream signalling pathways) in the SHR may be responsible, at least in part, for the hypertensive phenotype

    Differential expression of catecholamine synthetic enzymes in the caudal ventral pons

    No full text
    The analysis of colocalization of multiple catecholamine biosynthetic enzymes within the ventrolateral part of the medulla oblongata of the rat revealed distinct subpopulations of neurons within the C1 region (Phillips et al., J Comp Neurol 2001, 432:20-34). In extending this study to include the caudal pons, it was shown for the first time that the A5 cell group could be distinguished by the presence of immunoreactivity to tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and dopamine beta hydroxylase (DBH). A novel cell group was also identified. The cells within this new group were immunoreactive to DBH but not TH, AADC, or phenylethanolamine N-methyltransferase (PNMT) and will be referred to as the TH-, DBH+ cell group. The TH-, DBH+ neurons were not immunoreactive for either the dopamine or noradrenaline transporters, suggesting that these neurons do not take up these transmitters. A5 neurons were immunoreactive for the noradrenaline transporter but not the dopamine transporter (as previously shown). Retrograde tracing with cholera toxin B revealed that the TH-, DBH+ neurons do not project to the thoracic spinal cord or to the rostral ventrolateral medulla, but A5 neurons do. A calbindin immunoreactive cell group is located in a region overlapping TH-, DBH+ cell group. However, only a few neurons were immunoreactive for both markers. The physiological role of the TH-, DBH+ cell group remains to be determined
    corecore