66 research outputs found

    Genetics of Familial Amyotrophic Lateral Sclerosis

    Get PDF
    Electronics engineerin

    The influence of resistance training on neuromuscular function in middle-aged and older adults: a systematic review and meta-analysis of randomised controlled trials.

    Get PDF
    Background Deterioration of neuromuscular function is a major mechanism of age-related strength loss. Resistance training (RT) improves muscle strength and mass. However, the effects of RT on neuromuscular adaptations in middle-aged and older adults are unclear. Methods Randomised controlled RT interventions (≥2 weeks) involving adults aged ≥50 years were identified. Primary outcome measures were voluntary activation (VA), electromyographic (EMG) activity during maximal voluntary contraction (MVC), and antagonist coactivation. Data were pooled using a weighted random-effect model. Sub-analyses were conducted by muscle or muscle group and health status of participants. Sensitivity analysis was based on study quality. P < 0.05 indicated statistical significance. Results Twenty-seven studies were included. An effect was found for VA (standardised mean difference [SMD] 0.54, 0.01 to 1.07, P = 0.04), This result remained significant following sensitivity analysis involving only studies that were low risk of bias. Subgroup analyses showed an effect for plantar flexor VA (SMD 1.13, 0.20 to 2.06, P = 0.02) and VA in healthy participants (SMD 1.04, 0.32 to 1.76, P = 0.004). There was no effect for EMG activity or antagonist coactivation of any muscle group (P > 0.05). Discussion Resistance training did not alter EMG activity or antagonist coactivation in older adults. Sensitivity analysis resulted in the effect for VA remaining significant, indicating that this finding was not dependent on study quality. Studies predominantly involved healthy older adults (78%), limiting the generalisability of these findings to clinical cohorts. Future research should determine the effects of RT on neuromuscular function in people with sarcopenia and age-related syndromes

    Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS)

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS), a common late-onset neurodegenerative disease, is associated with fronto-temporal dementia (FTD) in 3-10% of patients. A mutation in CHMP2B was recently identified in a Danish pedigree with autosomal dominant FTD. Subsequently, two unrelated patients with familial ALS, one of whom also showed features of FTD, were shown to carry missense mutations in CHMP2B. The initial aim of this study was to determine whether mutations in CHMP2B contribute more broadly to ALS pathogenesis. Methodology/Principal Findings: Sequencing of CHMP2B in 433 ALS cases from the North of England identified 4 cases carrying 3 missense mutations, including one novel mutation, p. Thr104Asn, none of which were present in 500 neurologically normal controls. Analysis of clinical and neuropathological data of these 4 cases showed a phenotype consistent with the lower motor neuron predominant (progressive muscular atrophy (PMA)) variant of ALS. Only one had a recognised family history of ALS and none had clinically apparent dementia. Microarray analysis of motor neurons from CHMP2B cases, compared to controls, showed a distinct gene expression signature with significant differential expression predicting disassembly of cell structure; increased calcium concentration in the ER lumen; decrease in the availability of ATP; down-regulation of the classical and p38 MAPK signalling pathways, reduction in autophagy initiation and a global repression of translation. Transfection of mutant CHMP2B into HEK-293 and COS-7 cells resulted in the formation of large cytoplasmic vacuoles, aberrant lysosomal localisation demonstrated by CD63 staining and impairment of autophagy indicated by increased levels of LC3-II protein. These changes were absent in control cells transfected with wild-type CHMP2B. Conclusions/Significance: We conclude that in a population drawn from North of England pathogenic CHMP2B mutations are found in approximately 1% of cases of ALS and 10% of those with lower motor neuron predominant ALS. We provide a body of evidence indicating the likely pathogenicity of the reported gene alterations. However, absolute confirmation of pathogenicity requires further evidence, including documentation of familial transmission in ALS pedigrees which might be most fruitfully explored in cases with a LMN predominant phenotype

    Complete Closed Genome Sequence of Nontoxigenic Invasive Corynebacterium diphtheriae bv. mitis Strain ISS 3319

    Get PDF
    The genome sequence of the human pathogen Corynebacterium diphtheriae bv. mitis strain ISS 3319 was determined and closed in this study. The genome is estimated to have 2,404,936 bp encoding 2,257 proteins. This strain also possesses a plasmid of 1,960 bp

    Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier

    Get PDF
    Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer’s disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain

    LI-Detector:a Method for Curating Ordered Gene-Replacement Libraries

    Get PDF
    In recent years the availability of genome sequence information has grown logarithmically resulting in the identification of a plethora of uncharacterized genes. To address this gap in functional annotation, many high-throughput screens have been devised to uncover novel gene functions. Gene-replacement libraries are one such tool that can be screened in a high-throughput way to link genotype and phenotype and are key community resources. However, for a phenotype to be attributed to a specific gene, there needs to be confidence in the genotype. Construction of large libraries can be laborious and occasionally errors will arise. Here, we present a rapid and accurate method for the validation of any ordered library where a gene has been replaced or disrupted by a uniform linear insertion (LI). We applied our method (LI-detector) to the well-known Keio library of Escherichia coli gene-deletion mutants. Our method identified 3,718 constructed mutants out of a total of 3,728 confirmed isolates, with a success rate of 99.7% for identifying the correct kanamycin cassette position. This data set provides a benchmark for the purity of the Keio mutants and a screening method for mapping the position of any linear insertion, such as an antibiotic resistance cassette in any ordered library. IMPORTANCE The construction of ordered gene replacement libraries requires significant investment of time and resources to create a valuable community resource. During construction, technical errors may result in a limited number of incorrect mutants being made. Such mutants may confound the output of subsequent experiments. Here, using the remarkable E. coli Keio knockout library, we describe a method to rapidly validate the construction of every mutant.</p

    Broad clinical phenotypes associated with TAR-DNA binding protein (TARDBP) mutations in amyotrophic lateral sclerosis

    Get PDF
    The finding of TDP-43 as a major component of ubiquitinated protein inclusions in amyotrophic lateral sclerosis (ALS) has led to the identification of 30 mutations in the transactive response-DNA binding protein (TARDBP) gene, encoding TDP-43. All but one are in exon 6, which encodes the glycine-rich domain. The aim of this study was to determine the frequency of TARDBP mutations in a large cohort of motor neurone disease patients from Northern England (42 non-superoxide dismutase 1 (SOD1) familial ALS (FALS), nine ALS-frontotemporal dementia, 474 sporadic ALS (SALS), 45 progressive muscular atrophy cases). We identified four mutations, two of which were novel, in two familial (FALS) and two sporadic (SALS) cases, giving a frequency of TARDBP mutations in non-SOD1 FALS of 5% and SALS of 0.4%. Analysis of clinical data identified that patients had typical ALS, with limb or bulbar onset, and showed considerable variation in age of onset and rapidity of disease course. However, all cases had an absence of clinically overt cognitive dysfunction

    A multiomic approach to defining 1 the essential genome of the globally important pathogen Corynebacterium diphtheriae

    Get PDF
    Diphtheria is a respiratory disease caused by Corynebacterium diphtheriae. While the toxin-based vaccine has helped control outbreaks of the disease since the mid-20th century there has been an increase in cases in recent years, including systemic infections caused by non-toxigenic C. diphtheriae strains. Here we describe the first study of gene essentiality in C. diphtheriae, providing the most-dense Transposon Directed Insertion Sequencing (TraDIS) library in the phylum Actinobacteriota. This high-density library has allowed the identification of conserved genes across the genus and phylum with essential function and enabled the elucidation of essential domains within the resulting proteins including those involved in cell envelope biogenesis. Validation of these data through protein mass spectrometry identified hypothetical and uncharacterized proteins in the proteome which are also represented in the vaccine. These data are an important benchmark and useful resource for the Corynebacterium, Mycobacterium, Nocardia and Rhodococcus research community. It enables the identification of novel antimicrobial and vaccine targets and provides a basis for future studies of Actinobacterial biology
    • …
    corecore