16 research outputs found

    Neuronal dark matter: the emerging role of microRNAs in neurodegeneration

    Get PDF
    MicroRNAs (miRNAs) are small, abundant RNA molecules that constitute part of the cell's non-coding RNA “dark matter.” In recent years, the discovery of miRNAs has revolutionised the traditional view of gene expression and our understanding of miRNA biogenesis and function has expanded. Altered expression of miRNAs is increasingly recognized as a feature of many disease states, including neurodegeneration. Here, we review the emerging role for miRNA dysfunction in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) and Huntington's disease pathogenesis. We emphasize the complex nature of gene regulatory networks and the need for systematic studies, with larger sample cohorts than have so far been reported, to reveal the most important miRNA regulators in disease. Finally, miRNA diversity and their potential to target multiple pathways, offers novel clinical applications for miRNAs as biomarkers and therapeutic agents in neurodegenerative diseases

    Large-scale pathways-based association study in amyotrophic lateral sclerosis

    No full text
    Sporadic amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, most likely results from complex genetic and environmental interactions. Although a number of association studies have been performed in an effort to find genetic components of sporadic ALS, most of them resulted in inconsistent findings due to a small number of genes investigated in relatively small sample sizes, while the replication of results was rarely attempted. Defects in retrograde axonal transport, vesicle trafficking and xenobiotic metabolism have been implicated in neurodegeneration and motor neuron death both in human disease and animal models. To assess the role of common genetic variation in these pathways in susceptibility to sporadic ALS, we performed a pathway-based candidate gene case-control association study with replication. Furthermore, we determined reliability of whole genome amplified DNA in a large-scale association study. In the first stage of the study, 1277 putative functional and tagging SNPs in 134 genes spanning 8.7 Mb were genotyped in 822 British sporadic ALS patients and 872 controls using whole genome amplified DNA. To detect variants with modest effect size and discriminate among false positive findings 19 SNPs showing a trend of association in the initial screen were genotyped in a replication sample of 580 German sporadic ALS patients and 361 controls. We did not detect strong evidence of association with any of the genes investigated in the discovery sample (lowest uncorrected P-value 0.00037, lowest permutation corrected P-value 0.353). None of the suggestive associations was replicated in a second sample, further excluding variants with moderate effect size. We conclude that common variation in the investigated pathways is unlikely to have a major effect on susceptibility to sporadic ALS. The genotyping efficiency was only slightly decreased (∼1%) and genotyping quality was not affected using whole genome amplified DNA. It is reliable for large scale genotyping studies of diseases such as ALS, where DNA sample collections are limited because of low disease prevalence and short survival time. © 2007 The Author(s)

    Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions

    Get PDF
    Aims Amyotrophic lateral sclerosis (ALS) and primary lateral sclerosis (PLS) are two syndromic variants within the motor neurone disease spectrum. As PLS and most ALS cases are sporadic (SALS), this limits the availability of cellular models for investigating pathogenic mechanisms and therapeutic targets. The aim of this study was to use gene expression profiling to evaluate fibroblasts as cellular models for SALS and PLS, to establish whether dysregulated biological processes recapitulate those seen in the central nervous system and to elucidate pathways that distinguish the clinically defined variants of SALS and PLS. Methods Microarray analysis was performed on fibroblast RNA and differentially expressed genes identified. Genes in enriched biological pathways were validated by quantitative PCR and functional assays performed to establish the effect of altered RNA levels on the cellular processes. Results Gene expression profiling demonstrated that whilst there were many differentially expressed genes in common between SALS and PLS fibroblasts, there were many more expressed specifically in the SALS fibroblasts, including those involved in RNA processing and the stress response. Functional analysis of the fibroblasts confirmed a significant decrease in miRNA production and a reduced response to hypoxia in SALS fibroblasts. Furthermore, metabolic gene changes seen in SALS, many of which were also evident in PLS fibroblasts, resulted in dysfunctional cellular respiration. Conclusions The data demonstrate that fibroblasts can act as cellular models for ALS and PLS, by establishing the transcriptional changes in known pathogenic pathways that confer subsequent functional effects and potentially highlight targets for therapeutic intervention

    Distinct Assemblies of Heterodimeric Cytokine Receptors Govern Stemness Programs in Leukemia

    Get PDF
    Published first May 16, 2023Leukemia stem cells (LSC) possess distinct self-renewal and arrested differentiation properties that are responsible for disease emergence, therapy failure, and recurrence in acute myeloid leukemia (AML). Despite AML displaying extensive biological and clinical heterogeneity, LSC with high interleukin-3 receptor (IL3R) levels are a constant yet puzzling feature, as this receptor lacks tyrosine kinase activity. Here, we show that the heterodimeric IL3Rα/βc receptor assembles into hexamers and dodecamers through a unique interface in the 3D structure, where high IL3Rα/βc ratios bias hexamer formation. Importantly, receptor stoichiometry is clinically relevant as it varies across the individual cells in the AML hierarchy, in which high IL3Rα/βc ratios in LSCs drive hexamer-mediated stemness programs and poor patient survival, while low ratios mediate differentiation. Our study establishes a new paradigm in which alternative cytokine receptor stoichiometries differentially regulate cell fate, a signaling mechanism that may be generalizable to other transformed cellular hierarchies and of potential therapeutic significance.Winnie L. Kan, Urmi Dhagat, Kerstin B. Kaufmann, Timothy R. Hercus, Tracy L. Nero, Andy G.X. Zeng, John Toubia, Emma F. Barry, Sophie E. Broughton, Guillermo A. Gomez, Brooks A. Benard, Mara Dottore, Karen S. Cheung Tung Shing, Héléna Boutzen, Saumya E. Samaraweera, Kaylene J. Simpson, Liqing Jin, Gregory J. Goodall, C. Glenn Begley, Daniel Thomas, Paul G. Ekert, Denis Tvorogov, Richard J. D, Andrea, John E. Dick, Michael W. Parker, and Angel F. Lope

    Increased serum ferritin levels in amyotrophic lateral sclerosis (ALS) patients

    No full text
    Iron misregulation promotes oxidative stress, a proposed pathological mechanism in neurodegenerative disease. The aim of this study was to evaluate serum iron metabolism indicators in 60 amyotrophic lateral sclerosis (ALS) patients and 44 age matched controls. Serum ferritin levels were significantly increased in ALS patients compared to controls (p < 0.001), while no differences in the levels of serum iron, transferrin, iron saturation or total iron binding capacity were found. Likewise no differences in C reactive protein (CRP) or caeruloplasmin were detected, suggesting that the elevated ferritin levels in ALS did not merely indicate an acute phase response. The increased ferritin level may reflect a general increase in stored iron or be a consequence of ongoing muscle degeneration

    Association of the H63D polymorphism in the hemochromatosis gene with sporadic ALS

    No full text
    Iron misregulation promotes oxidative stress and abnormally high iron levels have been found in the spinal cords of patients with ALS. The authors investigated whether HFE gene polymorphisms, linked to hemochromatosis, are associated with ALS using two independent populations of patients with sporadic ALS and controls (totaling 379 patients and 400 controls). They found that the H63D polymorphism is overrepresented in individuals with sporadic ALS (odds ratio 1.85, CI: 1.35 to 2.54)

    A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series

    No full text
    Mutations in the progranulin gene (GRN) are a major cause of frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions (FTLD-U) but the distinguishing clinical and anatomical features of this subgroup remain unclear. In a large UK cohort we found five different frameshift and premature termination mutations likely to be causative of FTLD in 25 affected family members. A previously described 4-bp insertion mutation in GRN exon 2 comprised the majority of cases in our cohort (20/25), with four novel mutations being identified in the other five affected members. Additional novel missense changes were discovered, of uncertain pathogenicity, but deletion of the entire gene was not detected. The patient collection was investigated by a single tertiary referral centre and is enriched for familial early onset FTLD with a high proportion of patients undergoing neuropsychological testing, MRI and eventual neuropathological diagnosis. Age at onset was variable, but four mutation carriers presented in their 40s and when analysed as a group, the mean age at onset of disease in GRN mutation carriers was later than tau gene (MAPT) mutation carriers and duration of disease was shorter when compared with both MAPTand FTLD-U without mutation. The most common clinical presentation seen in GRN mutation carriers was behavioural variant FTLD with apathy as the dominant feature. However, many patients had language output impairment that was either a progressive non-fluent aphasia or decreased speech output consistent with a dynamic aphasia. Neurological and neuropsychological examination also suggests that parietal lobe dysfunction is a characteristic feature of GRN mutation and differentiates this group from other patients with FTLD. MR imaging showed evidence of strikingly asymmetrical atrophy with the frontal, temporal and parietal lobes all affected. Both right- and left-sided predominant atrophy was seen even within the same family. As a group, the GRN carriers showed more asymmetry than in other FTLD groups. All pathologically investigated cases showed extensive type 3 TDP-43-positive pathology, including frequent neuronal cytoplasmic inclusions, dystrophic neurites in both grey and white matter and also neuronal intranuclear inclusions. Finally, we confirmed a modifying effect of APOE-E4 genotype on clinical phenotype with a later onset in the GRN carriers suggesting that this gene has distinct phenotypic effects in different neurodegenerative diseases

    Truth Troubles

    No full text
    “truth” is an issue of public discussion, research, and everyday performance. Processes of navigating truth, however, are obscure and often unknown. In this project, the authors highlight truth(s) of written life texts. They conceive of truth as a rather than the “rhetorical device” to use for evaluating personal research and believe that demanding factual, historical truth-of-life research is faulty and problematic. By illustrating how genre, trust, memory, and confession influence truth telling, the authors hope to question and enhance truth-related conversations

    Measuring Diversity of Environmental Systems

    No full text
    Soil diversity (pedodiversity) is part of our natural and cultural heritage. The preservation of the pedosphere is essential for the protection of the biosphere and the Earth’s systems, the regulation of climate, and for world food security. In this chapter we discuss methods for summarizing pedodiversity, analyzing the relationships among biodiversity, pedodiversity, landform diversity, lithodiversity, and land use diversity
    corecore