6,980 research outputs found

    Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2.

    Get PDF
    Poly(ADP-ribose) polymerase-1 (PARP-1) has become an important pharmacological target in the treatment of cancer due to its cellular role as a 'DNA-strand break sensor', which leads in part to resistance to some existing chemo- and radiological treatments. Inhibitors have now been developed which prevent PARP-1 from synthesizing poly(ADP-ribose) in response to DNA-breaks and potentiate the cytotoxicity of DNA damaging agents. However, with the recent discoveries of PARP-2, which has a similar DNA-damage dependent catalytic activity, and additional members containing the 'PARP catalytic' signature, the isoform selectivity and resultant pharmacological effects of existing inhibitors are brought into question. We present here the crystal structure of the catalytic fragment of murine PARP-2, at 2.8 A resolution, and compare this to the catalytic fragment of PARP-1, with an emphasis on providing a possible framework for rational drug design in order to develop future isoform-specific inhibitors

    Interpretation, translation and intercultural communication in refugee status determination procedures in the UK and France

    Get PDF
    This article explores the interplay between language and intercultural communication within refugee status determination procedures in the UK and France, using material taken from ethnographic research that involved a combination of participant observation, semi-structured interviews and documentary analysis in both countries over a two-year period (2007–2009). It is concerned, in particular, to examine the role played by interpreters in facilitating intercultural communication between asylum applicants and the different administrative and legal actors responsible for assessing or defending their claims. The first section provides an overview of refugee status determination procedures in the UK and France, introducing the main administrative and legal contexts of the asylum process within which interpreters operate in the two countries. The second section compares the organisation of interpreting services, codes of conduct for interpreters and institutional expectations about the nature of interpreters’ activity on the part of the relevant UK and French authorities. The third section then explores some of the practical dilemmas for interpreters and barriers to communication that exist in refugee status determination procedures in the two countries. The article concludes by emphasising the complex and active nature of the interpreter's role in UK and French refugee status determination procedures

    Connecting the time domain community with the Virtual Astronomical Observatory

    Get PDF
    The time domain has been identified as one of the most important areas of astronomical research for the next decade. The Virtual Observatory is in the vanguard with dedicated tools and services that enable and facilitate the discovery, dissemination and analysis of time domain data. These range in scope from rapid notifications of time-critical astronomical transients to annotating long-term variables with the latest modeling results. In this paper, we will review the prior art in these areas and focus on the capabilities that the VAO is bringing to bear in support of time domain science. In particular, we will focus on the issues involved with the heterogeneous collections of (ancillary) data associated with astronomical transients, and the time series characterization and classification tools required by the next generation of sky surveys, such as LSST and SKA.Comment: Submitted to Proceedings of SPIE Observatory Operations: Strategies, Processes and Systems IV, Amsterdam, 2012 July 2-

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201

    Matter effects in the D0-D0bar system

    Full text link
    We discuss the impact of matter effects in the D0-D0bar system. We show that such effects could, in principle, be measured, but that they cannot be used to probe the mass difference x_D or the lifetime difference y_D. This occurs because the mixing effects and the matter effects decouple at short times. We also comment briefly on the B systems.Comment: 6 pages, RevTe

    Montage: a grid portal and software toolkit for science-grade astronomical image mosaicking

    Full text link
    Montage is a portable software toolkit for constructing custom, science-grade mosaics by composing multiple astronomical images. The mosaics constructed by Montage preserve the astrometry (position) and photometry (intensity) of the sources in the input images. The mosaic to be constructed is specified by the user in terms of a set of parameters, including dataset and wavelength to be used, location and size on the sky, coordinate system and projection, and spatial sampling rate. Many astronomical datasets are massive, and are stored in distributed archives that are, in most cases, remote with respect to the available computational resources. Montage can be run on both single- and multi-processor computers, including clusters and grids. Standard grid tools are used to run Montage in the case where the data or computers used to construct a mosaic are located remotely on the Internet. This paper describes the architecture, algorithms, and usage of Montage as both a software toolkit and as a grid portal. Timing results are provided to show how Montage performance scales with number of processors on a cluster computer. In addition, we compare the performance of two methods of running Montage in parallel on a grid.Comment: 16 pages, 11 figure

    Adaptable-radius, time-orbiting magnetic ring trap for Bose-Einstein condensates

    Full text link
    We theoretically investigate an adjustable-radius magnetic storage ring for laser-cooled and Bose-condensed atoms. Additionally, we discuss a novel time-dependent variant of this and other ring traps. Time-orbiting ring traps provide a high optical access method for spin-flip loss prevention near a storage ring's circular magnetic field zero. Our scalable storage ring will allow one to probe the fundamental limits of condensate Sagnac interferometry.Comment: 5 pages, 3 figures. accepted in J Phys

    From Lunar Regolith to Fabricated Parts: Technology Developments and the Utilization of Moon Dirt

    Get PDF
    The U.S. Space Exploration Policy has as a cornerstone the establishment of an outpost on the moon. This lunar outpost wil1 eventually provide the necessary planning, technology development, testbed, and training for manned missions in the future beyond the Moon. As part of the overall activity, the National Aeronautics and Space Administration (NASA) is investigating how the in situ resources can be utilized to improve mission success by reducing up-mass, improving safety, reducing risk, and bringing down costs for the overall mission. Marshall Space Flight Center (MSFC), along with other NASA centers, is supporting this endeavor by exploring how lunar regolith can be mined for uses such as construction, life support, propulsion, power, and fabrication. An infrastructure capable of fabrication and nondestructive evaluation will be needed to support habitat structure development and maintenance, tools and mechanical parts fabrication, as well as repair and replacement of space-mission hardware such as life-support items, vehicle components, and crew systems, This infrastructure will utilize the technologies being developed under the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the technologies being developed under the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the Space Exploration Initiative by reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the need and plan for understanding the properties of the lunar regolith to determine the applicability of using this material in a fabrication process. This effort includes the development of high fidelity simulants that will be used in fabrication processes on the ground to drive down risk and increase the Technology Readiness Level (TRL) prior to implementing this capability on the moon. Also discussed in this paper is the on-going research using Electron Beam Melting (EBM) technology as a possible solution to manufacturing parts and spares on the Moon's surface
    corecore