435 research outputs found

    Excitation energies from density functional perturbation theory

    Full text link
    We consider two perturbative schemes to calculate excitation energies, each employing the Kohn-Sham Hamiltonian as the unperturbed system. Using accurate exchange-correlation potentials generated from essentially exact densities and their exchange components determined by a recently proposed method, we evaluate energy differences between the ground state and excited states in first-order perturbation theory for the Helium, ionized Lithium and Beryllium atoms. It was recently observed that the zeroth-order excitations energies, simply given by the difference of the Kohn-Sham eigenvalues, almost always lie between the singlet and triplet experimental excitations energies, corrected for relativistic and finite nuclear mass effects. The first-order corrections provide about a factor of two improvement in one of the perturbative schemes but not in the other. The excitation energies within perturbation theory are compared to the excitations obtained within Δ\DeltaSCF and time-dependent density functional theory. We also calculate the excitation energies in perturbation theory using approximate functionals such as the local density approximation and the optimized effective potential method with and without the Colle-Salvetti correlation contribution

    Electron localization : band-by-band decomposition, and application to oxides

    Full text link
    Using a plane wave pseudopotential approach to density functional theory we investigate the electron localization length in various oxides. For this purpose, we first set up a theory of the band-by-band decomposition of this quantity, more complex than the decomposition of the spontaneous polarization (a related concept), because of the interband coupling. We show its interpretation in terms of Wannier functions and clarify the effect of the pseudopotential approximation. We treat the case of different oxides: BaO, α\alpha-PbO, BaTiO3_3 and PbTiO3_3. We also investigate the variation of the localization tensor during the ferroelectric phase transitions of BaTiO3_3 as well as its relationship with the Born effective charges

    Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory

    Full text link
    The non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements is discussed in the framework of density functional perturbation theory. The approach is based on the 2n + 1 theorem applied to an electric-field-dependent energy functional. We report the expressions for the calculation of the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives are examined and their convergence with respect to the k-point sampling is discussed. We apply our method to a few simple cases and compare our results to those obtained with distinct techniques. Finally, we discuss the effect of a scissors correction on the EO coefficients and non-linear optical susceptibilities

    Specification of an extensible and portable file format for electronic structure and crystallographic data

    Full text link
    In order to allow different software applications, in constant evolution, to interact and exchange data, flexible file formats are needed. A file format specification for different types of content has been elaborated to allow communication of data for the software developed within the European Network of Excellence "NANOQUANTA", focusing on first-principles calculations of materials and nanosystems. It might be used by other software as well, and is described here in detail. The format relies on the NetCDF binary input/output library, already used in many different scientific communities, that provides flexibility as well as portability accross languages and platforms. Thanks to NetCDF, the content can be accessed by keywords, ensuring the file format is extensible and backward compatible

    Lattice Properties of PbX (X = S, Se, Te): Experimental Studies and ab initio Calculations Including Spin-Orbit Effects

    Full text link
    During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.Comment: 25 pages, 12 Figures, 1 table, submitted to PR

    Ab initio studies of phonon softening and high pressure phase transitions of alpha-quartz SiO2

    Full text link
    Density functional perturbation theory calculations of alpha-quartz using extended norm conserving pseudopotentials have been used to study the elastic properties and phonon dispersion relations along various high symmetry directions as a function of bulk, uniaxial and non-hydrostatic pressure. The computed equation of state, elastic constants and phonon frequencies are found to be in good agreement with available experimental data. A zone boundary (1/3, 1/3, 0) K-point phonon mode becomes soft for pressures above P=32 GPa. Around the same pressure, studies of the Born stability criteria reveal that the structure is mechanically unstable. The phonon and elastic softening are related to the high pressure phase transitions and amorphization of quartz and these studies suggest that the mean transition pressure is lowered under non-hydrostatic conditions. Application of uniaxial pressure, results in a post-quartz crystalline monoclinic C2 structural transition in the vicinity of the K-point instability. This structure, intermediate between quartz and stishovite has two-thirds of the silicon atoms in octahedral coordination while the remaining silicon atoms remain tetrahedrally coordinated. This novel monoclinic C2 polymorph of silica, which is found to be metastable under ambient conditions, is possibly one of the several competing dense forms of silica containing octahedrally coordinated silicon. The possible role of high pressure ferroelastic phases in causing pressure induced amorphization in silica are discussed.Comment: 17 pages, 8 figs., 8 Table

    Structural and dielectric properties of Sr2_{2}TiO4_{4} from first principles

    Full text link
    We have investigated the structural and dielectric properties of Sr2_{2}TiO4_{4},the first member of the Srn+1_{n+1}Tin_{n}O3n+1_{3n+1} Ruddlesden-Popper series, within density functional theory. Motivated by recent work in which thin films of Sr2_{2}TiO4_{4} were grown by molecular beam epitaxy (MBE) on SrTiO3_{3} substrates, the in-plane lattice parameter was fixed to the theoretically optimized lattice constant of cubic SrTiO3_{3} (n=∞\infty), while the out-of-plane lattice parameter and the internal structural parameters were relaxed. The fully relaxed structure was also investigated. Density functional perturbation theory was used to calculate the zone-center phonon frequencies, Born effective charges, and the electronic dielectric permittivity tensor. A detailed study of the contribution of individual infrared-active modes to the static dielectric permittivity tensor was performed. The calculated Raman and infrared phonon frequencies were found to be in agreement with experiment where available. Comparisons of the calculated static dielectric permittivity with experiments on both ceramic powders and epitaxial thin films are discussed.Comment: 11 pages, 1 figure, 8 tables, submitted to Phys. Rev.

    An efficient k.p method for calculation of total energy and electronic density of states

    Full text link
    An efficient method for calculating the electronic structure in large systems with a fully converged BZ sampling is presented. The method is based on a k.p-like approximation developed in the framework of the density functional perturbation theory. The reliability and efficiency of the method are demostrated in test calculations on Ar and Si supercells

    Exciton-plasmon states in nanoscale materials: breakdown of the Tamm-Dancoff approximation

    Full text link
    Within the Tamm-Dancoff approximation ab initio approaches describe excitons as packets of electron-hole pairs propagating only forward in time. However, we show that in nanoscale materials excitons and plasmons hybridize, creating exciton--plasmon states where the electron-hole pairs oscillate back and forth in time. Then, as exemplified by the trans-azobenzene molecule and carbon nanotubes, the Tamm-Dancoff approximation yields errors as large as the accuracy claimed in ab initio calculations. Instead, we propose a general and efficient approach that avoids the Tamm--Dancoff approximation, and correctly describes excitons, plasmons and exciton-plasmon states
    • …
    corecore