234 research outputs found

    Topological Tracking of Connected Components in Image Sequences

    Full text link
    Persistent homology provides information about the lifetime of homology classes along a filtration of cell complexes. Persistence barcode is a graphical representation of such information. A filtration might be determined by time in a set of spatiotemporal data, but classical methods for computing persistent homology do not respect the fact that we can not move backwards in time. In this paper, taking as input a time-varying sequence of two-dimensional (2D) binary digital images, we develop an algorithm for encoding, in the so-called {\it spatiotemporal barcode}, lifetime of connected components (of either the foreground or background) that are moving in the image sequence over time (this information may not coincide with the one provided by the persistence barcode). This way, given a connected component at a specific time in the sequence, we can track the component backwards in time until the moment it was born, by what we call a {\it spatiotemporal path}. The main contribution of this paper with respect to our previous works lies in a new algorithm that computes spatiotemporal paths directly, valid for both foreground and background and developed in a general context, setting the ground for a future extension for tracking higher dimensional topological features in nDnD binary digital image sequences

    3D Well-composed Polyhedral Complexes

    Full text link
    A binary three-dimensional (3D) image II is well-composed if the boundary surface of its continuous analog is a 2D manifold. Since 3D images are not often well-composed, there are several voxel-based methods ("repairing" algorithms) for turning them into well-composed ones but these methods either do not guarantee the topological equivalence between the original image and its corresponding well-composed one or involve sub-sampling the whole image. In this paper, we present a method to locally "repair" the cubical complex Q(I)Q(I) (embedded in R3\mathbb{R}^3) associated to II to obtain a polyhedral complex P(I)P(I) homotopy equivalent to Q(I)Q(I) such that the boundary of every connected component of P(I)P(I) is a 2D manifold. The reparation is performed via a new codification system for P(I)P(I) under the form of a 3D grayscale image that allows an efficient access to cells and their faces

    Topological signature for periodic motion recognition

    Get PDF
    In this paper, we present an algorithm that computes the topological signature for a given periodic motion sequence. Such signature consists of a vector obtained by persistent homology which captures the topological and geometric changes of the object that models the motion. Two topological signatures are compared simply by the angle between the corresponding vectors. With respect to gait recognition, we have tested our method using only the lowest fourth part of the body's silhouette. In this way, the impact of variations in the upper part of the body, which are very frequent in real scenarios, decreases considerably. We have also tested our method using other periodic motions such as running or jumping. Finally, we formally prove that our method is robust to small perturbations in the input data and does not depend on the number of periods contained in the periodic motion sequence.Comment: arXiv admin note: substantial text overlap with arXiv:1707.0698

    Removal and Contraction Operations in nnD Generalized Maps for Efficient Homology Computation

    Get PDF
    In this paper, we show that contraction operations preserve the homology of nnD generalized maps, under some conditions. Removal and contraction operations are used to propose an efficient algorithm that compute homology generators of nnD generalized maps. Its principle consists in simplifying a generalized map as much as possible by using removal and contraction operations. We obtain a generalized map having the same homology than the initial one, while the number of cells decreased significantly. Keywords: nnD Generalized Maps; Cellular Homology; Homology Generators; Contraction and Removal Operations.Comment: Research repor

    Topology-based Representative Datasets to Reduce Neural Network Training Resources

    Full text link
    One of the main drawbacks of the practical use of neural networks is the long time required in the training process. Such a training process consists of an iterative change of parameters trying to minimize a loss function. These changes are driven by a dataset, which can be seen as a set of labelled points in an n-dimensional space. In this paper, we explore the concept of are representative dataset which is a dataset smaller than the original one, satisfying a nearness condition independent of isometric transformations. Representativeness is measured using persistence diagrams (a computational topology tool) due to its computational efficiency. We prove that the accuracy of the learning process of a neural network on a representative dataset is "similar" to the accuracy on the original dataset when the neural network architecture is a perceptron and the loss function is the mean squared error. These theoretical results accompanied by experimentation open a door to reducing the size of the dataset to gain time in the training process of any neural network
    corecore