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Abstract

In this paper, we show that contraction operations preserve the homol-
ogy of nD generalized maps, under some conditions. This result extends
the similar one given for removal operations in [6]. Removal and contrac-
tion operations are used to propose an efficient algorithm that compute
homology generators of nD generalized maps. Its principle consists in
simplifying a generalized map as much as possible by using removal and
contraction operations. We obtain a generalized map having the same
homology than the initial one, while the number of cells decreased signif-
icantly.

Keywords: nD Generalized Maps; Cellular Homology; Homology
Generators; Contraction and Removal Operations.

1 Introduction

In different areas of computer science, objects are represented as cells and inci-
dence relations. Most of the time, simplicial or cubical complexes are used [17,
19, 11, 13]. Then, it is often required for some high level operations to compute
features on the described objects. These features could be geometric, such as a
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curvature estimator, colorimetric, such as an histogram of colors, or topological,
such as Betti numbers. Among the existing topological features, the computa-
tion of homology over different combinatorial structures has been mainly studied
[13, 10, 20, 4, 8, 18].

Most of the time, the representation of a subdivided object using simplicial
or cubical structures require more cells than using a cellular one, where cells can
be more general. Indeed, when an operation modify these models, it is often
required to apply a post-processing step in order to keep the model valid, for
example a remeshing step for triangle data structures.

To solve these drawback, n-Gmaps have been introduced in [14, 15]. This
model allows to describe any cellular quasi manifolds orientable or not in any
dimension. One main interest of n-Gmaps is to be able to describe cells more
general than only simplicial or cubical cells. This simplify and improve the
efficiency of operations on this model which could be defined locally. For this
reason, n-Gmaps and some variants were used in several previous works on
image processing and geometrical modeling.

Now we are studying the problem of computing features on n-Gmaps, and
particularly on the computation of homology generators. To reach this objective,
a boundary operator has been defined in [3], and it has been proven in [2] that
there is a subclass of n-Gmaps for which the homology obtained by this operator
is equivalent to the homology of the corresponding simplicial complex.

In this paper, we focus on optimization for computing efficiently homology
generators for this subclass of n-Gmaps. As the complexity of homology com-
putation is directly linked to the number of cells of an object, the optimization
focuses on two simplification operations: removal and contraction of cells. In
this paper, we prove that these operations preserve the homology of a n-Gmap.
More precisely, these two operations allow to obtain an homologous object with
few number of cells. Then we can compute the homology generators on the
reduced object by reducing incidence matrices into their Smith-Agoston normal
form [1, 21, 9, 24]. We show some experiments that illustrate the interest of
our simplification method when we compute 2D and 3D homology generators of
triangular and cubical complexes. Moreover, we are able to directly project the
homology generators computed on the reduced object on the original object.

Section 2 recalls all the related materials regarding n-Gmaps, removal opera-
tions and homology. Section 3 presents the main results which state that homol-
ogy is preserved for removal and contraction operations under some conditions.
We present in Sect. 4 a simplification algorithm based of these operations which
ensures to preserve the homology of the described object. In Sect. 5 we present
some experiments showing that the number of cells is widely reduced. Finally,
Sect. 6 concludes this work and gives some possible improvements.

2 Preliminary Works

Generalized maps are combinatorial structures allowing to describe cellular sub-
divided objects. They are defined in any dimension, based on a unique basic
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Figure 1: Example of a 2-Gmap. (a) A 2D cellular complex containing 3 faces;
9 edges and 7 vertices. (b) The 2-Gmap G = (D,α0, α1, α2) describing this
cellular complex, having 24 darts (represented by numbered black segments).
Two darts linked by α0 are drawn consecutively and separated by a gray segment
(for example α0(19) = 20), two darts linked by α1 share a common point (for
example α1(20) = 21), and two darts linked by α2 are drawn parallel, the gray
segment over these two darts (for example α2(13) = 16).

elements, called darts. The notions of cells, adjacency and incidence are implic-
itly encoded though the notion of orbits and involutions.

2.1 n-Gmaps and Cells

Let us consider the 2D object shown in Fig. 1(a) to give the intuition of what is
a generalized map. This object is composed by 3 faces (2D elements), 9 edges
(1D elements) and 7 vertices (0D elements). This object is described with the
2-dimensional generalized map shown in Fig. 1(b). Intuitively, we decompose
each face of the 2D object in isolated faces, then we decompose each edge of the
isolated faces in isolated edges, and lastly we decompose each isolated edge in
isolated vertices. Elements obtained by this process are called darts and are the
atomic basic elements of any generalized map (numbered segments in Fig. 1(b)).
Then we add relations between these darts to represent the relations broken
during the decomposition process. α0 links two darts that belonged to the same
edge and face before the vertex decomposition (for example α0(19) = 20 in
Fig. 1(b)); α1 links two darts that belonged to the same vertex and face before
the edge decomposition (for example α1(20) = 21) and α2 links two darts that
belonged to the same vertex and edge before the face decomposition (for example
α2(13) = 16).

The same principle of decomposition can be done in any dimension which
gives the generic definition of n-dimensional generalized maps in Def. 1 [14, 15].

Definition 1 (n-Gmap) An n-dimensional generalized map, called n-Gmap,
with 0 ≤ n, is a (n + 2)−tuple G = (D,α0, . . . , αn) where:

1. D is a finite set of darts;

2. ∀i, 0 ≤ i ≤ n, αi is an involution on D;
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3. ∀i : 0 ≤ i ≤ n− 2, ∀j : i + 2 ≤ j ≤ n, αi ◦ αj is an involution.

We retrieve the set of darts D, and the n + 1 relations between these darts,
α0, . . . , αn. These relations are involutions, i.e. bijection equal to their inverse,
because when two darts are linked by αi, they are linked in both direction:
we have αi(d1) = d2 and αi(d2) = d1. Besides, we say that d is i−free if
αi(d) = d. Intuitively, that means that there is no other i-cell around dart
d. In the example of Fig. 1, darts 5, 6, 9 − 12, 17 − 22 are 2−free. The last
line of this definition ensures the topological validity of the described objects.
Intuitively, this condition ensures that when two darts of two cells are linked,
then all the darts of the cells are two-by-two linked. This ensures that two cells
are either disjointed, or completely linked, but they cannot be partially shared.
For example in 2D, this condition ensures that α0 ◦ α2 is an involution, i.e. in
the example of Fig. 1(b), since α0(1) = 2, if α2(1) = 23 then it is required that
α2(2) = 24.

An n-Gmap allows to represent all the cells of a subdivided objects and all
the incidence and adjacency relations, thanks to the orbit notion. Intuitively,
given a set of involutions Φ, the orbit of an element d relatively to Φ is the set
of all the elements that can be obtained from d by using any combination of
any involutions in Φ.

Definition 2 (Orbit) Let Φ = {π0, · · · , πn} be a set of involutions defined on
a set D. 〈Φ〉 is the involution group of D generated by Φ. The orbit of an
element d ∈ D relatively to 〈Φ〉, denoted 〈Φ〉 (d) is the set {φ(d) | φ ∈ 〈Φ〉}.

The cells of an n-Gmap are defined by some specific orbits.

Definition 3 (i-cell) Let G be an n-Gmap, and d ∈ D be a dart. Given i,
0 ≤ i ≤ n, the i-dimensional cell containing d, called i-cell and denoted by
ci(d), is

〈

α0, . . . , α(i−1), α(i+1), . . . , αn

〉

(d).

Intuitively, as αi(d) gives the dart belonging to another i-cell than the i-cell
containing dart d, considering the orbit containing all the involutions of the
n-Gmap except αi gives all the darts that belong to the same i-cell than d: in
the generalized map framework, this set of darts is the i-cell.

Observe that if a dart e belongs to an i-cell ci(d) then, ci(e) = ci(d). Besides,
each dart belongs to exactly one cell in each dimension. Therefore, each cell c
can be uniquely given by a set of darts and its dimension. Given an n-Gmap G,
Si
G denotes the set of all the cells (set of darts) of dimension i and SG = {Sq

G}q
is the graded set of all the cells obtained from the n-Gmap G.

Two i-cells c1 and c2 are adjacent if there is two darts d1 ∈ c1 and d2 ∈ c2
such that αi(d1) = d2. Two cells c3 and c4 are incident if c3 6= c4 and if
c3 ∩ c4 6= ∅.

In the example of Fig. 1, face f3 is described by 〈α0, α1〉 (1) = {1, 2, 3, 4, 5, 6},
edge e1 by 〈α0, α2〉 (13) = {13, 14, 15, 16}, and vertex v1 by 〈α1, α2〉 (2) =
{2, 3, 7, 14, 152, 24}. v1 and e1 are incident since 〈α1, α2〉 (2) ∩ 〈α0, α2〉 (13)
= {14, 15} 6= ∅. f1 and f3 are adjacent since 23 ∈ f1, 1 ∈ f3, and α2(1) = 23.
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2.2 Removal and Contraction Operations

Now, we want to simplify a given n-Gmap by deacreasing its number of cells. For
that, we are going to use two basic operations: the removal and the contraction
of a cell [7]. Firstly, we introduce the removal operation which consists to
remove an i−cell, while merging its two incident (i + 1)−cells. This operation
is not always possible: the cell to remove must be removable. The contraction
operation can be defined in a similar way than the removal operation. Indeed,
these two operations are dual: removing an i−cell in an n-Gmap is equivalent
to contracting the corresponding (n− i)−cell in the dual n-Gmap.

Definition 4 (Removable and contractible cells) Let G be an n-Gmap and
c an i-cell of G.

• c is removable
if i = n−1, or if 0 ≤ i < n−1 and ∀d ∈ c, αi+1 ◦αi+2(d) = αi+2 ◦αi+1(d).

• c is contractible
if i = 1, or if 1 < i ≤ n and ∀d ∈ c, αi−1 ◦ αi−2(d) = αi−2 ◦ αi−1(d).

The notion of removable cell c is strongly related to the number of its (i+ 1)
incident cells, called the degree of c and denoted degree(c). Similarly, the notion
of contractible cell c is strongly related to the number of its (i−1) incident cells,
called the codegree of c and denoted codegree(c). A consequence of Def. 4 is
that an i−cell of degree > 2 is not removable and an i−cell of codegree > 2 is
not contractible.

Now we can define the i−removal operation. This operation takes an n-
Gmap and an i-cell c to remove as input, and modify the n-Gmap to obtain the
generalized map in which c is removed.

Definition 5 (i-removal) Let G = (D,α0, . . . , αn) be an n-Gmap and c be
a removable i-cell of G. We denote DV = αi(c) \ c, the set of darts i-linked
with c that do not belong to c. The n-Gmap obtained by removing c from G is
G′ = (D′, α′

0, . . . , α
′
n) defined by:

• D′ = D \ c;

• ∀j ∈ {0, . . . , i− 1, i + 1, . . . , n} : α′
j = αj |D′; 1

• ∀d ∈ D′ \DV : α′
i(d) = αi(d);

• ∀d ∈ DV : α′
i(d) = (αi ◦ αi+1)k ◦ αi(d),

with k the smallest integer such that (αi ◦ αi+1)k ◦ αi(d) ∈ DV .

In the 2-Gmap shown in Fig. 2(a), which describes the 2D subdivided object
shown in Fig. 2(d), all the edges are removable (since an (n− 1)-cell is always
removable in an n-Gmap), vertex v2 is removable while vertex v1 is not. Remov-
ing edge e1 merges faces f1 and f2 in one face, called f ′

1, having as boundary

1α′

j
is equal to αj restricted to D′, i.e. ∀d ∈ D′ : α′

j
(d) = αj(d).
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Figure 2: Examples of removal operations in 2-Gmaps, and the correspond-
ing effect on the described objects. The first line gives the 2-Gmaps, and the
second line the corresponding 2D subdivided objects. (a) and (d): Initial con-
figuration. (e) and (b): Configuration obtained from the initial configuration
by removing edge e1, described by darts {13, 14, 15, 16}. (f) and (c): Configu-
ration obtained from the second configuration by removing vertex v3, described
by darts {12, 17}.

the boundary of f1 plus the boundary of f2 minus edge e1. We obtain the 2-
Gmap shown in Fig. 2(b) which corresponds to the subdivided object shown in
Fig. 2(e). In this 2-Gmap, vertex v3 is now removable (while it was not remov-
able before the removal of edge e1), and we remove it. Its two incident edges,
e3 and e4, are merged in one edge, called e′3. We obtain the 2-Gmap shown in
Fig. 2(c) which corresponds to the subdivided object shown in Fig. 2(f).

Definition 6 (i-contraction) Let G = (D,α0, . . . , αn) be an n-Gmap and c
be a contractible i-cell of G. We denote DV = αi(c) \ c, the set of darts i-linked
with c that do not belong to c. The n-Gmap obtained by contracting c from G
is G′ = (D′, α′

0, . . . , α
′
n) defined by:

• D′ = D \ c;

• ∀j ∈ {0, . . . , i− 1, i + 1, . . . , n}: α′
j = αj |D′ ;

• ∀d ∈ D′ \DV : α′
i(d) = αi(d);

• ∀d ∈ DV : α′
i(d) = (αi ◦ αi−1)k ◦ αi(d),

with k the smallest integer such that (αi ◦ αi−1)k ◦ αi(d) ∈ DV .

Example of contractible cells and contraction operations are given in Fig. 3.
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Figure 3: Examples of contraction operations in 2-Gmaps. (a) Initial configura-
tion where the two faces {1, 2, 3, 4} and {5, 6, 7, 8} are contractible. (b) 2-Gmap
obtain from the initial configuration by contracting the face {1, 2, 3, 4}. (c) 2-
Gmap obtain from the second configuration by contracting the face {5, 6, 7, 8}.

The n-Gmap obtained by removing/contracting c from G is G′, where we
have removed all the darts of c from its set of darts; where all the involutions
αj for j 6= i are preserved; where αi(d) is preserved for each dart d that is not
i-linked to one dart of c. Thus the only modification concern αi(d) for each
dart d which is i-linked to one dart of c. For such a dart, we modify its αi to
be the first dart found after traversing darts of c. The only difference between
removal and contraction operations is the way that we traverse darts of c: we
use successively αi ◦ αi+1 for removal, while we use successively αi ◦ αi−1 for
contraction.

2.3 Introduction to Homology

Homology is a topological invariant that characterizes k−dimensional holes of an
object (i.e. connected components, tunnels, cavities...). Homology groups are
defined from an algebraic structure called free chain complex, denoted (C∗, ∂∗).
Each group Ck is the group of k−chains, generated by all the k−cells. The
homomorphisms ∂k describe the boundary of k−chains as (k − 1)−chains. In
particular, the boundary of any 0−chain is trivial, and for any k−chain, k > 1,
∂k−1 ◦ ∂k = 0. Homology can be computed over different coefficient group
(Z,Z/2Z,Q...), but the most topological information is obtained when com-
puting homology over Z. Thus, for computing homology, we need a boundary
operator.

2.4 Homology for n-Gmaps

Now the question is how to compute the homology of n-Gmaps. For that, we
have defined a boundary operator [3, 2] for n-Gmaps. However, this boundary
operator is defined only for orientable cells.

In an n-Gmap, a cell is orientable if it can be partitioned in two subsets of
darts, such that two darts linked by any αj do not belong to the same subset.
Note that vertices are always orientable.
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Figure 4: Example of orientable and non-orientable cells. (a) A 2-Gmap con-
taining 8 darts, and representing a Möbius strip. All the cells of this 2-Gmap
are orientable, even the face {1, 2, 3, 4, 5, 6, 7, 8}, but the 2-Gmap itself is non
orientable. (b) A 3-Gmap containing 12 darts, and representing a volume which
boundary is a projective plane, i.e. the closure of a Möbius strip by adding
a new face. In this 3-Gmap, all the 0-cells, 1-cells and 2-cells are orientable.
But the 3-cell {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is not orientable. (c) Involutions
α0, α1, α2 of the 3-Gmap represented in (b). α3 = id for each dart.

Definition 7 (Orientable i-cell) An i-cell c is orientable if i = 0 or if c =
e1 ∪ e2 such that: ∀d ∈ c, ∀j, 0 ≤ j ≤ n, j 6= i: d is not j-free ⇒ d and αj(d)
do not belong to the same set e1 or e2. c is non-orientable otherwise.

Note that a non orientable object can have all its cells orientable. For ex-
ample, the 2-Gmap in Fig. 4(a) represents a Möbius strip, which is non ori-
entable object, but all its cells are orientable. The second example, presented
in Fig. 4(b), describes a 3-Gmap having a non orientable 3-cell.

Now given an orientable i-cell, we have to orient it. As cells are described
by set of darts in n-Gmaps, the orientation of a cell will be made through the
orientation of its darts. We associate to each dart d a sign, denoted sgi(d), that
gives the orientation of dart d for its i-cell.

Definition 8 (Signed i-cell) Let c be an orientable i-cell. The corresponding
signed i-cell is c together with a sign for each of its dart d, denoted sgi(d):

• sgi(d) = −sgi(αj(d)) ∀j: 0 ≤ j < i such that d is not j-free;

• sgi(d) = sgi(αj(d)) ∀j: i < j ≤ n.

We can see in Fig. 5 the signed cells for the 2-Gmap introduced in Fig. 1.
Figure 5(a) shows sg0 and the orientation of 0-cells, Fig. 5(b) shows sg1 and the
orientation of 1-cells, and Fig. 5(c) shows sg2 and the orientation of 2-cells. The
corresponding orientation of i-cells are shown on the second line of the figure,
above the 2-Gmap with the corresponding signed incidence numbers sgi. Note
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Figure 5: Examples of signed incidence number in 2-Gmaps, and the corre-
sponding orientation on the cells of the subdvided objects. The first line gives
the 2-Gmaps, and the second line the corresponding 2D subdivided objects with
the oriented cells. (a) and (d) Orientations of 0-cells. (b) and (e) Orientations
of 1-cells. (c) and (f) Orientations of 2-cells.

that the choice of the orientation of each cell is totally arbitrary, and has no
consequence on the homology computation.

As we can see in Fig. 5(a), all the darts of a same 0-cell have the same sign
sg0. For 1-cells, two darts of the same 1-cell have the same sign sg1 if they are
linked with α2, and they have two opposite signs if they are linked with α0. In
Fig. 5(b), we have for example α0(13) = 14 and α2(13) = 16. Thus darts 13 and
14 have two opposite signs sg1(13) = +1 and sg1(14) = −1; and darts 13 and 16
have the same sign sg1(13) = +1 and sg1(16) = +1. In Fig. 5(e), we choose the
convention that a 1−cell is oriented starting from its −1 extremity and going
to its +1 extremity, but we can consider the other convention used here only
on the figure. For 2-cells, two darts of the same 2-cell have two opposite signs
sg2 if they are linked with α0 or with α1 (see Fig. 5(c)). In Fig. 5(f) we choose
the convention that a 2-cell is oriented by turning starting from a negative dart
and going to a positive one.

Definition 9 (Signed incidence number) Let G be an n-Gmap with all its
cells signed. Let ci be an i-cell of G and d one of its darts. Let {pj}j=1···k be a
set of darts such that the orbits {

〈

α0, · · · , α(i−2)

〉

(pj)}j=1···k make a partition

of
〈

α0, . . . , α(i−1)

〉

(d). The signed incidence number between the cell ci and an
(i− 1)-cell ci−1 is defined by

(ci : ci−1) =
∑

pj ,j=1···k|pj∈ci−1

sgi(pj).sg
i−1(pj).

9



Consider the 2-Gmap in Fig. 5. Let i = 1, d = 15 and c1 = e1 =
{13, 14, 15, 16}. Then, 〈α0〉 (15) = {15, 16}; k = 2; p1 = 15 and p2 = 16.
Let c0 = v1 = {2, 3, 7, 14, 15, 24}. Then,

(e1 : v1) =
∑

pj ,j=1,2|pj∈v1

sg1(pj).sg
0(pj) = sg1(15).sg0(15) = 1.

Now the boundary operator ∂G of any i-cell c is defined as ∂G(c) =
∑

c′(c :
c′)c′, where c′ are (i−1)−cells incident to c. The boundary operator ∂G satisfies
∂G ◦ ∂G = 0 when there are no i-free darts for 0 ≤ i ≤ n − 1. Observe that
if there are no i-free darts for 0 ≤ i ≤ n − 1, neither are after removals and
contractions.

Let Cq(SG) denote the group of q-chains of SG. The chain complex (C∗(SG),
∂G) is the chain group C∗(SG) = {Cq(SG)}q together with the boundary oper-
ator ∂G. The homology of G is defined as the homology of the chain complex
(C∗(SG), ∂G).

We have proven in [2] that the homology defined on n-Gmaps by this bound-
ary operator is equivalent to the simplicial homology of the associated quasi-
manifolds when the homology of the canonical boundary of each i-cell is that
of an (i − 1)-sphere, and when ∀d ∈ D, ∀i ∈ {0, . . . , n}, d is i-free or αi(d) 6∈
〈α0, . . . , αi−2, αi+2, . . . , αn〉 (d).

In the following, all the considered n-Gmaps have all its cells signed, no
i-free darts for 0 ≤ i < n and satisfied these conditions.

3 Removal and Contraction Operations Preserv-

ing Homology

In this section, we show that under certain conditions, contraction and removal
operations can be performed while preserving the homology. In particular, we
perform removal of degree two cells, and contraction of codegree two cells.

We start to show that removal and contraction operations preserve the ori-
entation of each cell. This property is required to guaranty that we are able to
compute the homology of the simplified n-Gmap.

Proposition 1 After a removal or contraction of an n-Gmap having all its cells
orientable, we obtain a new n-Gmap with all its cell orientable.

Proof. We study here the case of degree two cell removal. We denote by
G = (D,α0, . . . , αn) the initial n-Gmap having all its cells orientable and G′ =
(D′, α′

0, . . . , α
′
n) the map obtain after the operation. Let us prove that after the

removal of an i-cell c, cells in G′ remain orientable. c′ in G′ orientable means
that c′ is partitioned in two sets S1 and S2 so that two darts d and d′ in c′

linked by an αk belong to two different sets.
For j = i: c′ is orientable in G′ because i-cells different from c are not

modified by the removal.
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Otherwise j 6= i: If c′ was a j-cell in G, for any dart d, α′
k(d) = αk(d). If

there is a j-cell e in G such that c′ = e \ c only α′
i is modified, thus for any dart

d, for any k 6= i, α′
k(d) = αk(d). Thus as d is not k-free, d and α′

k(d) belongs to
two different sets S1 and S2 in G′ as this is the case for d and αk(d) in G.

We use the same argument for darts d ∈ D′ \DV and for k = i as in this
case we also have α′

i(d) = αi(d).
Now for d ∈ DV and for k = i, we have α′

i(d) = (αiαi+1)kαi(d). We know
that all darts in the path (αi ◦ αi+1)k ◦ αi(d) are non free for the next α used
(d is not i-free, αi(d) is not (i + 1)-free, αi ◦ αi+1(d) is not i-free . . . ). As e is
orientable in G, we know that d and αi(d) belongs to two different sets, then d
and αi ◦αi+1(d) belongs to the same set . . . As the length of the part is odd, and
no dart of the path is free, we conclude that d and (αi ◦ αi+1)k ◦ αi(d) belong
to two different sets; thus c′ is orientable in G′.

Otherwise, j = i+1 and c′ = a∪b\c, with a and b the two (i+1)-cells incident
to c in G. a and b are orientable so there exist two sets that partition each cell:
S′
a, S′′

a for a and S′
b, S

′′
b for b. Let us consider Sa1 for the set among S′

a, S′′
a and

Sb2 for the set among S′
b, S′′

b , such that it exists d ∈ Sa1 and αi+1(d) ∈ Sb2;
and Sa2 and Sb1 for the other sets. We know such a dart exists by definition of
adjacency relation.

Let S1 = Sa1 ∪ Sb1 \ c and S2 = Sa2 ∪ Sb2 \ c. Consider two darts d1 and
d2 in c′ such that α′

k(d1) = d2. If k 6= i, or d1 6∈ DV , we have α′
k(d1) = αk(d1)

thus d1 and d2 belong to the same (j + 1)-cell a or b. Thus we have d1 ∈ Sa1

and d2 ∈ Sa2 or d1 ∈ Sb1 and d2 ∈ Sb2. Thus d1 ∈ S1 and d2 ∈ S2.
If d1 ∈ DV and k = i, then α′

k(d1) = (αi ◦αi+1)k ◦αi(d1) = d2. By using the
same arguments than for above, we conclude that d1 and d2 belong to different
sets S1 and S2.

The proof is the same for contraction operation, replacing αi+1 by αi−1. ✷

Proposition 2 ensures that if an i−cell c is removable and degree two, then
c appears ±1 time in the boundary of each of its two incident (i + 1)−cells.
Similarly, if an i-cell is contractible and codegree two, then only its two (i −
1)−incident cells appear in the boundary of c.

Proposition 2 Let c be an i-cell, 0 ≤ i ≤ n.

• If c is removable and degree two, then there are two (i + 1)-cells a and
b satisfying: |(a : c)| = |(b : c)| = 1 and for all other (i + 1)-cells c′,
(c′ : c) = 0.

• If c is contractible and codegree two, then there are two (i− 1)-cells a and
b satisfying: |(c : a)| = |(c : b)| = 1 and for all other (i − 1)-cells c′,
(c : c′) = 0.

Proof. Let us consider the case where c is contractible. Since c is codegree two,
then there are exactly two (i − 1)−cells a and b that are incidence to c. Then,
for all other (i − 1)-cells c′, (c : c′) = 0. So each dart of c is either in a or in b
and there exist two darts da, db ∈ c such that a =< α1, ..., αi−2, αi, ..., αn > (da)
and b =< α1, ..., αi−2, αi, ..., αn > (db) and αi−1(da) = db.
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Let d ∈ sa, then d = αi1 ◦ ... ◦ αik(da). Where i1, ..., ik ∈ {0, . . . , i − 2, i +
1, . . . , n}. Similarly, any dart of sb can be written as a composition of αk. From
the definitions of Gmaps and contractible cells, then αi−1 ◦ αk = αk ◦ αi−1,
so we have αi−1(d) = αi−1 ◦ αi1 ◦ ... ◦ αik(da) = αi1 ◦ ... ◦ αik ◦ αi−1(da) =
αi1 ◦ ... ◦ αik(db) ∈ sb. Then there is no dart d ∈ sa such that αi−1(d) ∈ sa
which implies that |(c : a)| = 1.

The same result holds for darts of sb.
The same proof can be done for a removable cell, replacing i− 1 by i+ 1. ✷

In [12], given a chain complex (C∗(S), ∂), it is proven that if there exist two
elements c ∈ Si and c′ ∈ Si+1 for some i > 0 such that |(c′ : c)| = 1, then
homology is preserved after removing c from Si and c′ from Si+1 and modifying
∂ in a proper way. Adapting that result to our purpose, we have the following:

Proposition 3 Let (C∗(S), ∂) and (C∗(S′), ∂′) be two chain complexes. Let
c be an i-cell and c′ an (i + 1)-cell, both in S, such that |(c′ : c)| = 1. Let
π : S \ {c, c′} → S′ be a bijective function such that for any j-cell x ∈ S \ {c, c′}:

• π(x) is a j-cell in S′;

• ∂′π(x) = π (∂(x)− (x : c′)(c′) if j = i + 2;
∂′π(x) = π (∂(x)− (x : c)(c′ : c)∂(c′)) if j = i + 1;
and ∂′π(x) = π∂(x) otherwise;

where π is extended by linearity to chains. Then the chain complexes (C∗(S), ∂)
and (C∗(S′), ∂′) have isomorphic homology groups.

To prove the result, we construct a chain contraction [16] of (C∗(S), ∂) to
(C∗(S′), ∂′) which is a triple (f = {fq : Cq(S)→ Cq(S′)}q, g = {gq : Cq(S′)→
Cq(S)}q and φ = {φq : Cq(S) → Cq+1(S)}q) such that: (i) f and g are chain
maps; i.e. fq◦∂q = ∂′

q ◦fq and gq◦∂
′
q = ∂q◦gq for all q; (ii) φ is a chain homotopy

of idC∗(S) = {idq : Cq (S) → Cq (S)}q to g ◦ f = {gq ◦ fq : Cq(S) → Cq(S)}q;
i. e. φq−1 ◦ ∂q + ∂q+1 ◦ φq = idq − gq ◦ fq for all q; (iii) f ◦ g = idC∗(S′). If
a chain contraction (f, g, φ) of (C∗(S), ∂) to (C∗(S′), ∂′) exists, then the chain
complexes (C∗(S), ∂) and (C∗(S′), ∂′) have isomorphic homology groups.
Proof. Define (f, g, φ) as follows:

• f(c) = π (c− (c′ : c)∂(c′)), f(c′) = 0 and f(x) = π(x) for x ∈ S \ {c, c′}.

• Let z be a j-cell in S′ and let x ∈ S \ {c′, c} such that π(x) = z. Then,
g(z) = x− (x : c)(c′ : c)c′ if j = i + 1 and g(z) = x otherwise.

• φ(c) = (c′ : c)c′ and φ(x) = 0 for x ∈ S \ {c}.

To check that (f, g, φ) is a chain contraction of (C∗(S), ∂) to (C∗(S′), ∂′) is left
to the reader. ✷

Definition 10 (Cells preserved-condition) Let G be an n-Gmap. Let c be
an i-cell, and E a subset of the graded cell SG (the set of all the cells of G). We
say that an operation on G that provides a new n-Gmap G′ is (E, c)−preserved
if each j-cell e ∈ E is after the operation a j-cell composed of darts e \ c.
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Note that in general, the contraction or the removal of a cell may induce
removal of other cells. For example, it is possible to build a sphere made of
two vertices, one codegree two edge and one face. Contracting the edge would
suppress all the darts and so the vertices and the face. The cell preserved
condition ensures that when removing a degree two cell or contracting a codegree
two cell, other cells are preserved.

Now, the following proposition describes the condition to ensure that removal
and contraction preserve homology. In [6], we focus on the removal part of the
following proposition. Here we generalize this to removal and contraction.

Proposition 4 Let c be a removable (resp. contractible) degree (resp. codegree)
two i-cell in an n-Gmap G. Let a and b the two incident (i + 1)−cells (resp.
(i−1)−cells) of c, E = SG\{a, b, c}, and G′ the n-Gmap result of the operation.
If the removal (resp. contraction) of c is (E, c)−preserved and if a and b are
merged into the (i+1)−cell (resp. (i−1)−cell) a∪b\c in G′, then the homology
groups of G and G′ are isomorphic.

Let us note Ec the set of cells incident to c. By definition of removal
and contraction operations, we know that the cells not in Ec are not modi-
fied by the operations. Thus we are sure that the operation is (SG \ (Ec ∪
{a, b, c}), c)−preserved. Thus the operation is (E, c)−preserved is equivalent to
saying that the operation is (Ec \ {a, b, c}, c)−preserved: the condition needs
only to be verifyied for the cells incident to c.
Proof. Let us focus on the contraction part:

It is immediate that S′
G = SG \ {a, c}.

As the operation is (E, c)−preserved, with E = SG \ {a, b, c}, there is bi-
jection between the cells before and after the operation π : SG \ {a, b, c} → S′

G

such that π(e) = e \ c. We extend this bijection by defining π(b) = (a ∪ b) \ c.
Observe that ∂G(c) = (c : a)a + (c : b)b and for e, x ∈ SG \ {a, b, c}, we have

that:
(e \ c : x \ c) = (e : x)
(e \ c : a ∪ b \ c) = (e : b)− (e : a)(c : a)(c : b)
(a ∪ b \ c : x \ c) = (e : b)

We have to prove that the boundary conditions in Prop. 3 are satisfied. Let e
be a j-cell in SG \ {c, a}. We have to prove that:

∂G′π(e) = π (∂G(e)− (e : c)c) if j = i + 1;
∂G′π(e) = π (∂G(e)− (e : a)(c : a)∂G(c)) if j = i,
∂G′π(e) = π∂G(e) otherwise.

• If j = i + 1 then π (∂G(e)− (e : c)c) =
∑

x∈SG\{a,b,c}(e : x)π(x)

=
∑

x∈SG\{a,b,c}(e : x)(x \ c) = ∂G′(e \ c) = ∂G′π(e).

• If j = i then π (∂G(e)− (e : a)(c : a)∂G(c))
= ((e : b)− (e : a)(c : a)(c : b))π(b) +

∑

x∈SG\{a,b,c}(e : x)π(x)

= ((e : b) − (e : a)(c : a)(c : b))(a ∪ b \ c) +
∑

x∈SG\{a,b,c}(e : x)(x \ c) =

∂G′(e \ c) = ∂G′π(e).
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• If j 6= i, i + 1 and e = b, then π∂G(b) =
∑

x∈SG\{a,b,c}(b : x)(x \ c) =

∂G′(a ∪ b \ c) = ∂G′π(e).

• If j 6= i, i + 1 and e 6= b then π∂G(e) =
∑

x∈SG\{a,b,c}(e : x)(x \ c)

= ∂G′(e \ c) = ∂G′π(e).

The prove is similar for removal operation. ✷

3.1 Dangling and Codangling cells

Dangling and codangling cells are special cases as they do not satisfy the de-
gree/codegree two property. However they can also be simplified, under some
conditions, without modifying the homology of the n-Gmap.

Let (C∗(S), ∂) be a chain complex. Let c be an i-cell and c′ an (i + 1)-cell,
both in S, such that |(c′ : c)| = 1, (x : c) = 0 for any x ∈ Si+1, x 6= c′.
The operation under which we remove c and c′ from S to get S′ = S \ {c, c′}
is called elementary collapse. By Prop. 3, the chain complexes (C∗(S), ∂) and
(C∗(S′), ∂|′S) have isomorphic homology groups, being π : S \ {c, c′} → S′ in
this case, the identity. Therefore an elementary collapse preserves homology.

A subset A of S is collapsible if all the elements of A can be removed from S
in a sequence of elementary collapses. That is, if we can order the cells of A as
a sequence A = {a1, b1, a2, b2, . . . , am, bm} such that Si = S \ {a1, b1, . . . , ai, bi}
is an elementary collapse of Si−1 = Si ∪ {ai, bi}, for 1 ≤ i ≤ m.

Let G be an n-Gmap and c an i-cell in G. The closure of c, denoted c, is the
set made of c plus all the j-cells, 0 ≤ j < i that are incident to c. The closure
of a set C of cells, denoted C, is the union of the closures of all the cells of C.
Similarly, the coclosure of c, denoted c, is the set made of c plus all the j-cells,
i < j ≤ n that are incident to c. The coclosure of a set C of cells, denoted C,
is the union of the coclosures of all the cells of C.

Definition 11 (Dangling and codangling cells) Let c be an i-cell in an n-
Gmap.

• Let C be the set of (i−1)−cells incident to c, and B = {c′ ∈ C|degree(c′) >
1}. c is dangling if degree(c) = 1 and {c} ∪ C \B is collapsible.

• Let E be the set of (i+1)−cells incident to c, and F = {c′ ∈ E|codegree(c′) >
1}. c is codangling if codegree(c) = 1 and {c} ∪ E \ F is collapsible.

In [6] we stated that the removal of a removable dangling cell preserves
homology. A similar result holds for codangling cell.

Proposition 5 Let c be an i-cell in an n-Gmap G.

• If c is removable and dangling cell, and the removal of c is (B̄, c)−preserved,
then its removal preserves the homology of G.

• If c is contractible and codangling cell, and the contraction of c is (F , c)-
preserved, then its contraction preserves the homology of G.
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Proof. Let us prove the result for contractible codangling cells. Let G′ be
the n-Gmap obtained after contracting c. When we remove the i-cell c, then
all the codegree one (i + 1)-cells e incident to c are also removed from G since
all the darts of e are darts of c. By the same reason, all the cells of E \ F
are removed from G when we remove c by the contraction operation. No more
cells are removed since the contraction of c is (F , c)−preserved. Therefore,
SG′ = SG \ (E \ F ). Since E \ F is collapsible, then G and G′ have isomorphic
homology groups. The proof is similar for the removable dangling case. ✷ ✷

4 Simplification Algorithm

Now we can use the removal and contraction operations in order to simplify a
given n-Gmap G while preserving its homology. As the number of cells in the
simplified n-Gmap will be much smaller than the number of cells in the initial
one, we will speed-up the homology computation by using the reduced n-Gmap
instead of the original one. Our simplification algorithm will start to remove
cells, then to contract cells.

The removal of i-cells which are either degree two or dangling cells is pre-
sented in Algo. 1. As we have seen in the previous section, these cells can be
removed without modyfing the homology of the n-Gmap.

Algorithm 1: Remove i-cells.

Input: An n-Gmap G.
Result: Remove i-cells of G while preserving the same homology.

foreach i-cell c of G do
if c is removable and the degree of c is 2 and other cells are
preserved then

Remove c;

else if c is removable and c is a dangling cell then
Push(P, c);
repeat

c← pop(P );
if Other cells are preserved then

Push in P all the removable dangling i-cells adjacent to c;
Remove c;

until empty(P );

In this algorithm, we iterate through all the i-cells of G. If the current cell c
is a removable degree two cell such that the other cells are preserved, we remove
it by using the removal operation and we pass to the next i-cell. Otherwise, if
c is removable, dangling and other cells are preserved, we also can remove it.
However we push in the stack P all the dangling i-cells adjacent to c. Indeed,
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Figure 6: Example to illustrate the removal of dangling cells. (a) An initial
configuration made of two volumes that share nine square faces numbered from
1 to 9. (b) After the removal of face 1 which was a removal degree two face.
(c) After the removal of faces 4, 6, 8, 9, 6, 3 which were all removal dangling
faces (when they are considered successively in this order). Here face 2 is not
dangling while face 5 is. (c) After the removal of face 5, face 2 becomes dangling
and can be removed.

these cells need to be reconsidered as they are become dangling due to the
removal of c.

This case is illustrated in Fig. 6 where we start with a configuration made of
two volumes that share nine square faces numbered from 1 to 9 in Fig. 6(a). As
faces as considered in any order, let us suppose we start to process face number
1. This face is removable, has a degree equal to 2 and cells are preserved, thus
it is removed and we obtain the configuration shown in Fig. 6(b) where the two
cubes were merged, and all the faces numbered from 2 to 9 have now degree
1. Then, let us suppose we consider faces numbered 4, 7, 8, 9, 6 and 3 in this
order. Each face is removable and dangling, and thus can be removed without
modifying the homology of the 2-Gmap. We obtain the configuration shown in
Fig. 6(c). In this configuration, if we consider face 2, this face is not dangling as
the face plus the degree one edges in its boundary is not collapsible. Then we
consider face 5 which is dangling, and after its removal, face 2 is now become
dangling and thus be reconsidered a second time.

We present in Algo. 2 the similar algorithm for contraction operation.
Now we can use these two algorithms to simplify a given n-Gmap G: this

global algorithm is given in Algo. 3. The principle of this global algorithm is
to start to remove i-cells, i starting from n − 1 (the dimension of G minus
1) and going downto 0. We consider the cells in decreasing order for removal
operation, as the removal of an i-cell will decrease the degree of its incident
(i− 1)-cells. Thus these cells could be non removable before the removal of the
i−cell and become removable after (as in the example in Fig. 2). After all the
removal operations, we can continue the simplification by using the contraction
operation. Now we consider i-cell contractions starting from i = 1 and going to
i = n. Indeed, contracting an i-cell c will decrease the codegree of its (i+1)-cells
thus these cells could become contractible after the contraction of c.
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Algorithm 2: Contract i-cells.

Input: An n-Gmap G.
Result: Contract i-cells of G while preserving the same homology.

foreach i-cell c of G do
if c is contractible and the codegree of c is 2 and other cells are
preserved then

Contract c;

else if c is contractible and c is a codangling cell then
Push(P, c);
repeat

c← pop(P );
if Other cells are preserved then

Push in P all the contractible codangling i-cells adjacent
to c;
Contract c;

until empty(P );

Algorithm 3: Simplification of a given n-Gmap.

Input: An n-Gmap G.
Result: Simplify G while preserving the same homology.

for i← n− 1 to 0 do
Remove i-cells;

for i← 1 to n do
Contract i-cells;
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Notice that there are no particular arguments to start to remove then to
contract cells, and we can inverse these two steps without problem and obtain
also a simplified n-Gmap having the same homology than G.

Complexity: The two algorithms Algo. 1 and Algo. 2 have a complexity linear
in number of darts of G. Indeed, considering all the i-cells can be done linearly in
number of darts by using a Boolean mark to mark darts already considered. The
two tests of being removable/contractible, and the degree/codegree computation
have a complexity linear in number of darts of the considered cell, and in number
of darts in its incidence cells. Removal and contraction operations are linear in
number of darts of the cell. Lastly, we are sure that reconsidered cells are
retested only once as they become dangling, they are now removed the second
time they are treated.

The complexity of the global simplification method Algo. 3 is thus linear in
the number of darts of G times the dimension of the space (which is a constant
number). Moreover, notice that each successive step of remove i-cells or contract
i-cells is quicker than the previous one as the number of darts decreases after
each new simplification step.

5 Experiments

We have implemented our simplification algorithm and the computation of the
homology generators of a Gmap in Moka [25], a 3D topological modeler based on
a kernel made of 3-Gmaps. In the current version of our code, the simplification
of removable degree two cells, dangling cells and edge contraction of degree
two contractible cells have been implemented. We are working on the code
to implement the face contraction, and the case of codangling cells but this
is not finished yet. However, even with this limited version, we already have
interesting results illustrating the interest of simplifying contractible cells in
addition to removable cells.

To compute homology generators, we compute incidence matrices (which
describe the boundary of the cells) using the signed incidence number between
all the cells of the n-Gmap. Then we reduce incidence matrices into their Smith-
Agoston normal form to compute homology generators [1]. In this Agoston
reduced normal form, for a given dimension d, the basis of the boundaries Bp

is a subset of the basis of cycles Zp, thus the quotient group Hp = Zp/Bp

can directly be obtained by simply removing from Zp the boundaries of infinite
order. Note that by using the definition of removal and contraction operations,
we are able to project the generators of the simplified object on the initial one.

In [6], we have made some experiments where we compared the results ob-
tained by our method which computes the homology of the simplified objects
using removal operations only, with other two methods Chomp [5] and RedHom

[22]. The results of these experiments show that our method was generally
quicker than both other methods. As in this paper we improve the previous
method given in [6], we only make some experiments to compare the new ap-
proach with this previous one.
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(a) (b) (c)

Figure 7: Examples of some meshes from the Shrec database.

# darts |S0
G| |S1

G| |S2
G| B0 B1 B2

min 696 72 184 116 1 0 0
max 540966 47000 137125 90161 3221 1416 1321

mean 69660 6631 18045 11610 190 35 41
std 84391 7577 21472 14065 446 123 135

Table 1: Characteristics of the 320 objects used in our 2D experimentation.
The first 4 columns give the number of darts, vertices, edges and faces. (the
number of i-cells is the cardinal of the set Si

G). The 3 last columns give the
Betti numbers B0, B1 and B2. For each characteristic, we give the minimum
and maximum value, the mean and the standard deviation.

Thus we present here the results of two different experiments that illustrate
the generality of our method. In a first experiment, we compute the 2D ho-
mology generators of 320 2D triangular meshes described by 2-Gmaps. These
meshes are taken from a 3D database available in the Shape Retrieval Contest
web page [23]. In a second experiment, we have computed the 3D homology
generators of 300 3D set of voxels. Each set of voxels is randomly generated
within an image of size 643. In the first case, we compute 2D simplicial homol-
ogy while in the second case we compute 3D cubical homology. In both cases,
we use the same code which shows the interest of using a generic framework
allowing to represent any type of cells.

5.1 2D Triangular Models

We present in Fig. 7 some 3D meshes extracted from the Shrec database, and
in Table 1 some characteristics of the 320 objects used in this experiment. Note
that all these objects are orientable, thus there is no torsion in the homology
groups. Moreover, as each face is a triangle, there is no 0-free nor 1-free darts,
but there are sometimes some 2-free darts for meshes with boundary.

For each object, we have first simplified the 2-Gmap by using removal op-
erations only, and we have computed the time required to simplify this Gmap,
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Removal only
Time

# darts |S0
G| |S1

G| |S2
G| Simplif. Homology

min 2 1 1 1 0 0
max 17046 5631 5726 3221 0,27 6435,41

mean 722 282 276 190 0,04 47,40
std 1621 620 619 446 0,05 391,83

Removal and Contraction
Time

# darts |S0
G| |S1

G| |S2
G| Simplif. Homology

min 2 1 1 1 0 0
max 15056 4700 4795 3221 0,28 3644,35

mean 653 257 251 190 0,04 33,87
std 1463 569 559 446 0,05 244,59

Table 2: Results of our 2D experiments. We give the number of cells (columns
|Si

G|), the simplification time (columns Time\Simplif.) and the computation
time for homology generators (columns Time\Homology) for the objects sim-
plified by using removal operations only, then for objects simplified by using
removal and contraction operations. Times are given in seconds, 0s means less
than 10−6s.

the characteristics of the simplified Gmap and the time required to compute
its homological generators. Then, starting from the same initial object, we
have simplified the 2-Gmap by using removal and contraction operations, and
have computed the same values. This allows us to show the interest of using
contraction simplifications in addition to removal ones.

The results are shown in Table 2. We can see in these results that in average,
there are 25 edges that are contracted, which represents about 10% of the total
number of edges. Note that as we do not contract faces, nor codangling cells, the
number of faces is not modified by the contraction simplification. We can notice
that the time spend by the simplification process is near equal between the two
versions. This can be explained by the small number of cells in the 2-Gmap
after the removal simplification. However, there is a non negligible gain for the
time spend to compute the homology generators: in average about 14 seconds
which is about 29%. Note that in Table 2 we only present the Betti numbers,
but in practice we compute homology generators which give more information.

These results show the interest of using contraction simplification to speed
up the computation of homology generators. Moreover, this interest is more
important for bigger objects. For example, the maximum time spend for the
computation of homology generators is 6435 seconds if we use the removal op-
erations only, while it is 3644 seconds if we use both removal and contraction
operations.
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# darts |S0
G| |S1

G| |S2
G| |S3

G| B0 B1 B2

min 12227904 271780 797654 780869 254748 1 0 0
max 12582768 274628 811198 798716 262141 150 44 7

mean 12422916 273554 805519 790809 258811 49 18 2
std 81516 654 3162 4190 1698 34 10 2

Table 3: Characteristics of the 300 objects used in our 3D experimentation.
The first 5 columns give the number of darts, vertices, edges, faces and volumes
(the number of i-cells is the cardinal of the set Si

G). The 3 last columns give
the Betti numbers B0, B1 and B2 (B3 is always 0). For each characteristic, we
give the minimum and maximum value, the mean and the standard deviation.

5.2 3D Set of Voxels

In this second experiment, we generate randomly 300 3D set of voxels within an
image of size 643. Then as in the previous experiment, we compare the results
obtained by the simplification method using only removal operations with the
results obtained by the simplification method using removal and contraction
operations. As in the previous experiment, all the objects generated here are
orientable and thus there is no torsion coefficient. Moreover, as the voxels are
embedded in 3D Euclidean space, the homology group H3 is always trivial and
thus the corresponding Betti number B3 = 0.

We give in Table 3 the characteristics of the 3D generated objects. As we
use the same method to randomly create all the objects, we can see that they
have all similar number of darts and cells. However, as the position of voxels is
randomly chosen, we have different Betti numbers.

The results of our method that computes the homology generators for these
3D cubical objects are given in Table 4. Firstly we must notice that the number
of cells is significantly decreased by both simplification methods. This can be
characterize by the number of darts which in average starts from 12, 422, 916
and decreases to 1, 435 for removal only and to 1, 273 for removal and con-
traction. Secondly, the number of contracted edges is in average 40, which
represents about 18% of the total number of edges. This explains the gain for
the computation time of homology generators for the method with removal and
contraction operations which is in average 0.41 seconds, about 10% of the time
of the removal only simplification method.

The gain is here less important than for our 2D experiments, 10% instead
of 29%. This can be explain by the fact that we did not use yet the face and
volume contractions. In 2D, edge contraction have a more relative impact as
edges are used in the two incidence matrices, while in 3D, edges are used in two
incidence matrices among three. For this reason, we think we could improve
significantly our 3D results by using face and volume contractions.
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Removal only
Time

# darts |S0
G| |S

1
G| |S

2
G| |S

3
G| Simplif. Homology

min 28 5 5 3 1 3,30 0,00
max 4152 497 563 270 150 3,93 4,86

mean 1435 198 215 99 49 3,63 0,50
std 810 109 115 56 34 0,09 0,73

Removal and Contraction
Time

# darts |S0
G| |S

1
G| |S

2
G| |S

3
G| Simplif. Homology

min 16 2 2 3 1 3,27 0,00
max 3868 434 494 270 150 3,52 3,57

mean 1273 158 175 99 49 3,36 0,35
std 751 95 99 56 34 0,04 0,53

Table 4: Results of our 3D experiments. We give the number of cells (columns
# i-cells), the simplification time (columns Time\Simplif.) and the computa-
tion time for homology generators (columns Time\Homology) for the objects
simplified by using removal operations only, then for objects simplified by using
removal and contraction operations. Times are given in seconds, 0s means less
than 10−6s.

6 Conclusion

In this paper, we have provided two new propositions giving the conditions
allowing to contract codegree two and codangling cells, and we have proven
that under these conditions, the homology of the n-Gmap is preserved. By using
similar result than in [6] for removal operations, we have proposed an algorithm
which simplifies a given n-Gmap by removing cells by decreasing dimension, then
contracting cells by increasing dimension. Thanks to our propositions, we know
that the homology of the Gmap is preserved during all the simplification process.
Thus we can compute the homology generators on the simplified objects. The
computation is faster as the number of cells of the simplified objects is small.

To show the interest of doing more simplifications, we have make two exper-
iments to compare the results of the computation of homology generators when
we simplify the objects by using only removal operations and by using removal
and contraction operations. Even if the method is not fully implemented (in
the current version of our code we only contract edges), the results show a non
negligible gain when the objects are more simplified. Moreover, there is almost
no overhead for the contraction step due to the fact that the object has already
a small number of cells after the removal step.

These experiments show also the interest of using a model that allows to
describe any type of cells: with the same software we are able to compute
simplicial and cubical homology generators in 2D and in 3D.
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Our first perspective is to finish the implementation of contraction opera-
tions for faces and volumes, and for codangling cells. We hope we can improve
again our results as the objects will be more simplified. We also want to make
some experiments in higher dimensions with orientable and non orientable ob-
jects. Then, we can study if we can propose other simplification operations that
preserve homology.

References

[1] M. K. Agoston. Algebraic Topology, a first course. Pure and applied math-
ematics. Marcel Dekker Ed., 1976.

[2] S. Alayrangues, G. Damiand, P. Lienhardt, and S. Peltier. A boundary
operator for computing the homology of cellular structures. Discrete &
Computational Geometry, under submission.

[3] S. Alayrangues, S. Peltier, G. Damiand, and P. Lienhardt. Border operator
for generalized maps. In Proc. of Discrete Geometry for Computer Imagery,
volume 5810 of LNCS, pages 300–312, Montréal, Canada, September 2009.
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A Proof of Prop. 3

By assumption, let (x : y) = 0 if degree(x) − degree(y) 6= 1. The following
property will be used throughout the proof:

for any (i + 2)−cell x,
∑

y∈Si+1

(x : y)(y : c) = 0

by the condition ∂∂(x) = 0.
Now, let us check that f is a chain map. Let x ∈ S, then:

• If x = c, then ∂′f(c) = ∂′π(c− (c′ : c)∂(c′)) = π∂(c− (c′ : c)∂(c′)) = π∂(c)
= f∂(c).

• If x = c′ then f∂(c‘) = f
(

(c′ : c)c +
∑

y 6=c(c
′ : y)y

)

= (c′ : c)π(c− (c′ : c)∂(c′)) +
∑

y 6=c(c
′ : y)π(y)

= π((c′ : c)c− ∂(c′)) +
∑

y 6=c(c
′ : y)π(y) = 0.

• Let x be a j-cell in S \ {c, c′}.

– If j = i + 2 then ∂′f(x) = ∂′π(x) = π (∂(x)− (x : c′)c′)
=

∑

y∈S\{c,c′}(x : y)π(y) =
∑

y∈S\{c,c′}(x : y)y = f∂(x).

– If j = 1 + 1, then ∂′f(x) = ∂′π(x) = π (∂(x)− (x : c)(c′ : c)∂(c′))
= π (∂(x)− (x : c)c + (x : c)c− (x : c)(c′ : c)∂(c′))
= f(∂(x)− (x : c)c) + (x : c)f(c) = f∂(c).

– If j 6= i + 1, i + 2 then f∂(x) = π∂(x) = ∂π(x) = ∂f(x).

Now, let us see that g is a chain map. Let z be a j-cell in S′, then there
exists a j-cell x ∈ S such that π(x) = z. Then: g∂′(z) = g∂′π(x).

• If j = i + 2 then g∂′π(x) = gπ (∂(x)− (x : c′)c′)
=

∑

y∈S\{c,c′}(x : y)gπ(y) =
∑

y∈S\{c,c′}(x : y)(y − (y : c)(c′ : c)c′)

=
∑

y∈S\{c,c′}(x : y)y + (x : c′)c′ = ∂(x) = ∂g(z).

• If j = i + 1 then g∂′π(x) = gπ(∂(x)− (x : c)(c′ : c)∂(c′))
= ∂(x)− (x : c)(c′ : c)∂(c′) = ∂(x− (x : c)(c′ : c)c′) = ∂g(z).

• If j 6= i + 1, i + 2 then g∂′(z) = g∂′π(x) = gπ∂(x)
=

∑

y∈S\{c,c′}(x : y)gπ(y) =
∑

y∈S\{c,c′}(x : y)y − (y : c)(c′ : c)c′

=
∑

y∈S\{c,c′}(x : y)y = ∂(x) = ∂g(z).

Now, let us check that fg = idC∗(S′). Let z ∈ S′ and x ∈ S \ {c, c′} such
that π(x) = z. Then fg(z) = fg(π(x)) = f(x− (x : c)(c′ : c)c′) = π(x) = z.

Finally, let us see that idC∗(S) = gf + φ∂ + ∂φ. Let x be a j-cell in S:

• If x = c then gf(c) = gπ(c − (c′ : c)∂(c′)) = c − (c′ : c)∂(c′); φ∂(c) = 0
and ∂φ(c) = (c′ : c)∂(c′). Then gf(c) + φ∂(c) + ∂φ(c) = c.
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• If x = c′ then gf(c′) = 0; φ∂(c′) = (c′ : c)(c′ : c)c = c and ∂φ(c′) = 0.
Then gf(c′) + φ∂(c′) + ∂φ(c′) = c′.

• If x 6= c, c′ then gf(x) = gπ(x) = x − (x : c)(c′ : c)c′; ∂φ(x) = 0 and
φ∂(x) = (x : c)(c′ : c)c′. Then gf(x) + φ∂(x) + ∂φ(x) = x.

B Proof of Prop. 4 Removable Case

Let c be a removable degree two i-cell in an n-Gmap G. Let a and b its two
incident (i + 1)−cells. π : SG \ {c, a} → SG′ is defined as: π(e) = e \ c for any
j-cell e ∈ SG \ {c, a, b}; and π(b) = a ∪ b \ c.

Observe that for e, x ∈ SG \ {a, b, c}, we have that :

(e \ c : x \ c) = (e : x)
(e \ c : a ∪ b \ c) = (e : b)
(a ∪ b \ c : x \ c) = (b : x)− (b : c)(a : c)(a : x)

We have to prove that the boundary conditions in Prop. 3 are satisfied. Let
e be a j−cell in SG \ {a, c}. We have to prove that.

∂G′π(e) = π (∂G(e)− (e : a)a) if j = i + 2,
∂G′π(e) = π (∂G(e)− (e : c)(a : c)∂G(a)) if j = i + 1,
∂G′(e) = π∂G(e) otherwise.

• If j = i + 2 then π (∂G(e)− (e : a)a)
= (e : b)π(b) +

∑

x∈SG\{a,b,c}(e : x)π(x)

= (e : b)(a ∪ b \ c) +
∑

x∈SG\{a,b,c}(e : x)(x \ c) = ∂G′(e \ c) = ∂G′π(e).

• If j = i + 1 and e = b then π (∂G(b)− (b : c)(a : c)∂G(a))
=

∑

x∈SG\{a,c,b}((b : x)− (b : c)(a : c)(a : x))π(x)

=
∑

x∈SG\{a,c,b}((b : x)− (b : c)(a : c)(a : x))(x \ c) = ∂G′(a ∪ b \ c)

= ∂G′π(b).

• If j = i + 1 and e 6= b, since e 6= a then (e : c) = 0, then
π (∂G(e)− (e : c)(a : c)∂(a)) =

∑

x∈SG\{a,c,b}(e : x)π(x)

=
∑

x∈SG\{a,c,b}(e : x)(x \ c) = ∂G′(e \ c) = ∂G′π(e).

• If j 6= i + 1, i + 2 then π∂G(e) =
∑

x∈SG\{a,c,b}(e : x)π(x)

=
∑

x∈SG\{a,c,b}(e : x)(x \ e) = ∂G′(e \ c) = ∂G′π(e).
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