10,814 research outputs found
Active galactic nuclei synapses: X-ray versus optical classifications using artificial neural networks
(Abridged) Many classes of active galactic nuclei (AGN) have been defined
entirely throughout optical wavelengths while the X-ray spectra have been very
useful to investigate their inner regions. However, optical and X-ray results
show many discrepancies that have not been fully understood yet. The aim of
this paper is to study the "synapses" between the X-ray and optical
classifications.
For the first time, the new EFLUXER task allowed us to analyse broad band
X-ray spectra of emission line nuclei (ELN) without any prior spectral fitting
using artificial neural networks (ANNs). Our sample comprises 162 XMM-Newton/pn
spectra of 90 local ELN in the Palomar sample. It includes starbursts (SB),
transition objects (T2), LINERs (L1.8 and L2), and Seyferts (S1, S1.8, and S2).
The ANNs are 90% efficient at classifying the trained classes S1, S1.8, and
SB. The S1 and S1.8 classes show a wide range of S1- and S1.8-like components.
We suggest that this is related to a large degree of obscuration at X-rays. The
S1, S1.8, S2, L1.8, L2/T2/SB-AGN (SB with indications of AGN), and SB classes
have similar average X-ray spectra within each class, but these average spectra
can be distinguished from class to class. The S2 (L1.8) class is linked to the
S1.8 (S1) class with larger SB-like component than the S1.8 (S1) class. The L2,
T2, and SB-AGN classes conform a class in the X-rays similar to the S2 class
albeit with larger fractions of SB-like component. This SB-like component is
the contribution of the star-formation in the host galaxy, which is large when
the AGN is weak. An AGN-like component seems to be present in the vast majority
of the ELN, attending to the non-negligible fraction of S1-like or S1.8-like
component. This trained ANN could be used to infer optical properties from
X-ray spectra in surveys like eRosita.Comment: 15 pages, 7 figures, accepted for publication in A&A. Appendix B only
in the full version of the paper here:
https://dl.dropboxusercontent.com/u/3484086/AGNSynapsis_OGM_online.pd
Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations
Insertion sequences (IS) are mobile genetic elements that are distributed in many prokaryotes. In particular, in the genomes of the symbiotic nitrogen-fixing bacteria collectively known as rhizobia, IS are fairly abundant in plasmids or chromosomal islands that carry the genes needed for symbiosis. Here, we report an analysis of the distribution and genetic conservation of the IS found in the genome of Rhizobium etli CFN42 in a collection of 87 Rhizobium strains belonging to populations with different geographical origins. We used PCR to generate presence/absence profiles of the 39 IS found in R. etli CFN42 and evaluated whether the IS were located in consistent genomic contexts. We found that the IS from the symbiotic plasmid were frequently present in the analyzed strains, whereas the chromosomal IS were observed less frequently. We then examined the evolutionary dynamics of these strains based on a population genetic analysis of two chromosomal housekeeping genes (glyA and dnaB) and three symbiotic sequences (nodC and the two IS elements). Our results indicate that the IS contained within the symbiotic plasmid have a higher degree of genomic context conservation, lower nucleotide diversity and genetic differentiation, and fewer recombination events than the chromosomal housekeeping genes. These results suggest that the R. etli populations diverged recently in Mexico, that the symbiotic plasmid also had a recent origin, and that the IS elements have undergone a process of cyclic infection and expansion
3D molecular line formation in dwarf carbon-enhanced metal-poor stars
We present a detailed analysis of the carbon and nitrogen abundances of two
dwarf carbon-enhanced metal-poor (CEMP) stars: SDSS J1349-0229 and SDSS
J0912+0216. We also report the oxygen abundance of SDSS J1349-0229. These stars
are metal-poor, with [Fe/H] < -2.5, and were selected from our ongoing survey
of extremely metal-poor dwarf candidates from the Sloan Digital SkySurvey
(SDSS). The carbon, nitrogen and oxygen abundances rely on molecular lines
which form in the outer layers of the stellar atmosphere. It is known that
convection in metal-poor stars induces very low temperatures which are not
predicted by `classical' 1D stellar atmospheres. To obtain the correct
temperature structure, one needs full 3D hydrodynamical models. Using CO5BOLD
3D hydrodynamical model atmospheres and the Linfor3D line formation code,
molecular lines of CH, NH, OH and C2 were computed, and 3D carbon, nitrogen and
oxygen abundances were determined. The resulting carbon abundances were
compared to abundances derived using atomic CI lines in 1D LTE and NLTE. There
is not a good agreement between the carbon abundances determined from C2 bands
and from the CH band, and molecular lines do not agree with the atomic CI
lines. Although this may be partly due to uncertainties in the transition
probabilities of the molecular bands it certainly has to do with the
temperature structure of the outer layers of the adopted model atmosphere. We
explore the influence of the 3D model properties on the molecular abundance
determination. In particular, the choice of the number of opacity bins used in
the model calculations and its subsequent effects on the temperature structure
and molecular line formation is discussed. (Abridged)Comment: Poster presented at IAU JD 10, Rio de Janeiro, 10-11 August 2009,
published in Memorie della Societa' Astronomica Italiana, Vol. 80 n.3 P.735.
One reference corrected, matches the published versio
Aspherical supernova explosions and formation of compact black hole low-mass X-ray binaries
It has been suggested that black-hole low-mass X-ray binaries (BHLMXBs) with
short orbital periods may have evolved from BH binaries with an
intermediate-mass secondary, but the donor star seems to always have higher
effective temperatures than measured in BHLMXBs (Justham, Rappaport &
Podsiadlowski 2006). Here we suggest that the secondary star is originally an
intermediate-mass (\sim 2-5 M_{\sun}) star, which loses a large fraction of
its mass due to the ejecta impact during the aspherical SN explosion that
produced the BH. The resulted secondary star could be of low-mass (\la 1
M_{\sun}). Magnetic braking would shrink the binary orbit, drive mass transfer
between the donor and the BH, producing a compact BHLMXB.Comment: 4 pages, accepted for publication in MNRAS Letter
Solar analogs with and without planets: T trends and galactic evolution
We explore a sample of 148 solar-like stars to search for a possible
correlation between the slopes of the abundance trends versus condensation
temperature (known as the Tc slope) both with stellar parameters and Galactic
orbital parameters in order to understand the nature of the peculiar chemical
signatures of these stars and the possible connection with planet formation. We
find that the Tc slope correlates at a significant level with the stellar age
and the stellar surface gravity. We also find tentative evidence that the Tc
slope correlates with the mean galactocentric distance of the stars (Rmean),
suggesting that stars that originated in the inner Galaxy have fewer refractory
elements relative to the volatile ones. We found that the chemical
peculiarities (small refractory-to-volatile ratio) of planet-hosting stars is
probably a reflection of their older age and their inner Galaxy origin. We
conclude that the stellar age and probably Galactic birth place are key to
establish the abundances of some specific elements.Comment: Proceedings of the GREAT-ITN conference: The Milky Way Unravelled by
Gaia. Will be published in the "EAS Publications Series
- …