9,038 research outputs found

    Control of dissipation in superconducting films by magnetic stray fields

    Full text link
    Hybrid superconducting/magnetic nanostructures on Si substrates have been built with identical physical dimensions but different magnetic configurations. By constructing arrays based on Co-dots with in-plane, out-of-plane, and vortex state magnetic configurations, the stray fields are systematically tuned. Dissipation in the mixed state of superconductors can be decreased (increased) by several orders of magnitude by decreasing (increasing) the stray magnetic fields. Furthermore, ordering of the stray fields over the entire array helps to suppress dissipation and enhance commensurability effects increasing the number of dissipation minima.Comment: 16 pages including 4 figures; accepted in Applied Physics Letter

    Exact solutions of an elliptic Calogero--Sutherland model

    Get PDF
    A model describing N particles on a line interacting pairwise via an elliptic function potential in the presence of an external field is partially solved in the quantum case in a totally algebraic way. As an example, the ground state and the lowest excitations are calculated explicitly for N=2.Comment: 4 pages, 3 figures, typeset with RevTeX 4b3 and AMS-LaTe

    Li-rich RGB stars in the Galactic Bulge

    Full text link
    We present Lithium abundance determination for a sample of K giant stars in the galactic bulge. The stars presented here are the only 13 stars with detectable Lithium line (6767.18 A) among ~400 stars for which we have spectra in this wavelength range, half of them in Baade's Window (b=-4) and half in a field at b=-6. The stars were observed with the GIRAFFE spectrograph of FLAMES@VLT, with a spectral resolution of R~20,000. Abundances were derived via spectral synthesis and the results are compared with those for stars with similar parameters, but no detectable Li line. We find 13 stars with a detectable Li line, among which 2 have abundances A(Li)>2.7. No clear correlations were found between the Li abundance and those of other elements. With the exception of the two most Li rich stars, the others follow a fairly tight A(Li)-T_eff correlation. It would seems that there must be a Li production phase during the red giant branch (RGB), acting either on a very short timescale, or selectively only in some stars. The proposed Li production phase associated with the RGB bump cannot be excluded, although our targets are significantly brighter than the predicted RGB bump magnitude for a population at 8 kpcComment: 8 pages, 9 figures, accepted for publication in A&

    Direct exoplanet detection and characterization using the ANDROMEDA method: Performance on VLT/NaCo data

    Full text link
    Context. The direct detection of exoplanets with high-contrast imaging requires advanced data processing methods to disentangle potential planetary signals from bright quasi-static speckles. Among them, angular differential imaging (ADI) permits potential planetary signals with a known rotation rate to be separated from instrumental speckles that are either statics or slowly variable. The method presented in this paper, called ANDROMEDA for ANgular Differential OptiMal Exoplanet Detection Algorithm is based on a maximum likelihood approach to ADI and is used to estimate the position and the flux of any point source present in the field of view. Aims. In order to optimize and experimentally validate this previously proposed method, we applied ANDROMEDA to real VLT/NaCo data. In addition to its pure detection capability, we investigated the possibility of defining simple and efficient criteria for automatic point source extraction able to support the processing of large surveys. Methods. To assess the performance of the method, we applied ANDROMEDA on VLT/NaCo data of TYC-8979-1683-1 which is surrounded by numerous bright stars and on which we added synthetic planets of known position and flux in the field. In order to accommodate the real data properties, it was necessary to develop additional pre-processing and post-processing steps to the initially proposed algorithm. We then investigated its skill in the challenging case of a well-known target, β\beta Pictoris, whose companion is close to the detection limit and we compared our results to those obtained by another method based on principal component analysis (PCA). Results. Application on VLT/NaCo data demonstrates the ability of ANDROMEDA to automatically detect and characterize point sources present in the image field. We end up with a robust method bringing consistent results with a sensitivity similar to the recently published algorithms, with only two parameters to be fine tuned. Moreover, the companion flux estimates are not biased by the algorithm parameters and do not require a posteriori corrections. Conclusions. ANDROMEDA is an attractive alternative to current standard image processing methods that can be readily applied to on-sky data

    Low-rank plus sparse decomposition for exoplanet detection in direct-imaging ADI sequences. The LLSG algorithm

    Get PDF
    Context. Data processing constitutes a critical component of high-contrast exoplanet imaging. Its role is almost as important as the choice of a coronagraph or a wavefront control system, and it is intertwined with the chosen observing strategy. Among the data processing techniques for angular differential imaging (ADI), the most recent is the family of principal component analysis (PCA) based algorithms. It is a widely used statistical tool developed during the first half of the past century. PCA serves, in this case, as a subspace projection technique for constructing a reference point spread function (PSF) that can be subtracted from the science data for boosting the detectability of potential companions present in the data. Unfortunately, when building this reference PSF from the science data itself, PCA comes with certain limitations such as the sensitivity of the lower dimensional orthogonal subspace to non-Gaussian noise. Aims. Inspired by recent advances in machine learning algorithms such as robust PCA, we aim to propose a localized subspace projection technique that surpasses current PCA-based post-processing algorithms in terms of the detectability of companions at near real-time speed, a quality that will be useful for future direct imaging surveys. Methods. We used randomized low-rank approximation methods recently proposed in the machine learning literature, coupled with entry-wise thresholding to decompose an ADI image sequence locally into low-rank, sparse, and Gaussian noise components (LLSG). This local three-term decomposition separates the starlight and the associated speckle noise from the planetary signal, which mostly remains in the sparse term. We tested the performance of our new algorithm on a long ADI sequence obtained on β Pictoris with VLT/NACO. Results. Compared to a standard PCA approach, LLSG decomposition reaches a higher signal-to-noise ratio and has an overall better performance in the receiver operating characteristic space. This three-term decomposition brings a detectability boost compared to the full-frame standard PCA approach, especially in the small inner working angle region where complex speckle noise prevents PCA from discerning true companions from noise

    Experimental realization of smectic phase in vortex matter induced by symmetric potentials arranged in two-fold symmetry arrays

    Get PDF
    Smectic order has been generated in superconducting Nb films with two-fold symmetry arrays of symmetric pinning centers. Magnetic fields applied perpendicularly to the films develop a vortex matter smectic phase that is easily detected when the vortices commensurate with the pinning center array. The smectic phase can be turned on and off with external parameters.Comment: 15 pages, 5 figure

    Nuclear parton distributions at next to leading order

    Full text link
    We perform a next to leading order QCD global analysis of nuclear deep inelastic scattering and Drell-Yan data using the convolution approach to parameterize nuclear parton densities. We find both a significant improvement in the agreement with data compared to previous extractions, and substantial differences in the scale dependence of nuclear effects compared to leading order analyses.Comment: 9 pages, 10 figure

    Magnetic order and disorder in nanomagnets probed by superconducting vortices

    Get PDF
    We have studied two nanomagnet systems with strong (Co/Pd multilayers) and weak (NdCo alloy films) stray magnetic fields by probing the out-of-plane magnetic states with superconducting vortices. The hybrid samples are made of array of nanomagnets embedded in superconducting Nb thin films. The vortex motion detects relevant magnetic state features, since superconducting vortices are able to discriminate between different magnetic stray field strengths and directions. The usual matching effect between the superconducting vortex lattice and the periodic pinning array can be quenched by means of disorder magnetic potentials with strong stray fields at random. Ordered stray fields retrieve the matching effect and yield asymmetry and shift in the vortex dissipation signal. Furthermore vortices can discriminate the sizes of the nanomagnet magnetic domains, detecting magnetic domain sizes as small as 70 nm. In addition, we observe that the vortex cores play the crucial role instead of the supercurrents around the vortex.Comment: 22 pages, 8 figure
    corecore