51,777 research outputs found

    Are Stars with Planets Polluted?

    Get PDF
    We compare the metallicities of stars with radial velocity planets to the metallicity of a sample of field dwarfs. We confirm recent work indicating that the stars-with-planet sample as a whole is iron rich. However, the lowest mass stars tend to be iron poor, with several having [Fe/H]<-0.2, demonstrating that high metallicity is not required for the formation of short period Jupiter-mass planets. We show that the average [Fe/H] increases with increasing stellar mass (for masses below 1.25 solar masses) in both samples, but that the increase is much more rapid in the stars-with-planet sample. The variation of metallicity with stellar age also differs between the two samples. We examine possible selection effects related to variations in the sensitivity of radial velocity surveys with stellar mass and metallicity, and identify a color cutoff (B-V>0.48) that contributes to but does not explain the mass-metallicity trend in the stars-with-planets sample. We use Monte Carlo models to show that adding an average of 6.5 Earth masses of iron to each star can explain both the mass-metallicity and the age-metallicity relations of the stars-with-planets sample. However, for at least one star, HD 38529, there is good evidence that the bulk metallicity is high. We conclude that the observed metallicities and metallicity trends are the result of the interaction of three effects; accretion of about 6 Earth masses of iron rich material, selection effects, and in some cases, high intrinsic metallicity.Comment: 19 pages 11 figure

    Photovoltaic array: Power conditioner interface characteristics

    Get PDF
    The electrical output (power, current, and voltage) of flat plate solar arrays changes constantly, due primarily to changes in cell temperature and irradiance level. As a result, array loads such as dc-to-ac power conditioners must be capable of accommodating widely varying input levels while maintaining operation at or near the maximum power point of the array. The array operating characteristics and extreme output limits necessary for the systematic design of array load interfaces under a wide variety of climatic conditions are studied. A number of interface parameters are examined, including optimum operating voltage, voltage energy, maximum power and current limits, and maximum open circuit voltage. The effect of array degradation and I-V curve fill factor or the array power conditioner interface is also discussed. Results are presented as normalized ratios of power conditioner parameters to array parameters, making the results universally applicable to a wide variety of system sizes, sites, and operating modes

    A new bridge between leptonic CP violation and leptogenesis

    Get PDF
    Flavor effects due to lepton interactions in the early Universe may have played an important role in the generation of the cosmological baryon asymmetry through leptogenesis. If the only source of high-energy CP violation comes from the left-handed leptonic sector, then it is possible to establish a bridge between flavored leptogenesis and low-energy leptonic CP violation. We explore this connection taking into account our present knowledge about low-energy neutrino parameters and the matter-antimatter asymmetry observed in the Universe. In this framework, we find that leptogenesis favors a hierarchical light neutrino mass spectrum, while for quasi-degenerate and inverted hierarchical neutrino masses there is a very narrow allowed window. The absolute neutrino mass scale turns out to be m < 0.1 eV.Comment: 10 pages, 3 figure

    Texture Zeros and Weak Basis Transformations

    Get PDF
    We investigate the physical meaning of some of the "texture zeros" which appear in most of the Ansatze on quark masses and mixings. It is shown that starting from arbitrary quark mass matrices and making a suitable weak basis transformation one can obtain some of these sets of zeros which therefore have no physical content. We then analyse the physical implications of a four-texture zero Ansatz which is in agreement with all present experimental data.Comment: 11 pages, typeset using revte

    Probing the geometry and motion of AGN coronae through accretion disc emissivity profiles

    Get PDF
    To gain a better understanding of the inner disc region that comprises active galactic nuclei it is necessary to understand the pattern in which the disc is illuminated (the emissivity profile) by X-rays emitted from the continuum source above the black hole (corona). The differences in the emissivity profiles produced by various corona geometries are explored via general relativistic ray tracing simulations. Through the analysis of various parameters of the geometries simulated it is found that emissivity profiles produced by point source and extended geometries such as cylindrical slabs and spheroidal coronae placed on the accretion disc are distinguishable. Profiles produced by point source and conical geometries are not significantly different, requiring an analysis of reflection fraction to differentiate the two geometries. Beamed point and beamed conical sources are also simulated in an effort to model jet-like coronae, though the differences here are most evident in the reflection fraction. For a point source we determine an approximation for the measured reflection fraction with the source height and velocity. Simulating spectra from the emissivity profiles produced by the various geometries produce distinguishable differences. Overall spectral differences between the geometries do not exceed 15 per cent in the most extreme cases. It is found that emissivity profiles can be useful in distinguishing point source and extended geometries given high quality spectral data of extreme, bright sources over long exposure times. In combination with reflection fraction, timing, and spectral analysis we may use emissivity profiles to discern the geometry of the X-ray source.Comment: 15 pages, 12 figures. Accepted for publication in MNRA

    Model of mobile agents for sexual interactions networks

    Full text link
    We present a novel model to simulate real social networks of complex interactions, based in a granular system of colliding particles (agents). The network is build by keeping track of the collisions and evolves in time with correlations which emerge due to the mobility of the agents. Therefore, statistical features are a consequence only of local collisions among its individual agents. Agent dynamics is realized by an event-driven algorithm of collisions where energy is gained as opposed to granular systems which have dissipation. The model reproduces empirical data from networks of sexual interactions, not previously obtained with other approaches.Comment: 6 pages, 8 figure

    Astrophysical and Cosmological Information from Large-scale sub-mm Surveys of Extragalactic Sources

    Get PDF
    We present a quantitative analysis of the astrophysical and cosmological information that can be extracted from the many important wide-area, shallow surveys that will be carried out in the next few years. Our calculations combine the predictions of the physical model by Granato et al. (2004) for the formation and evolution of spheroidal galaxies with up-to-date phenomenological models for the evolution of starburst and normal late-type galaxies and of radio sources. We compute the expected number counts and the redshift distributions of these source populations separately and then focus on proto-spheroidal galaxies. For the latter objects we predict the counts and redshift distributions of strongly lensed sources at 250, 350, 500, and 850 micron, the angular correlation function of sources detected in the surveys considered, the angular power spectra due to clustering of sources below the detection limit in Herschel and Planck surveys. An optimal survey for selecting strongly lensed proto-spheroidal galaxies is described, and it is shown how they can be easily distinguished from the other source populations. We also discuss the detectability of the imprints of the 1-halo and 2-halo regimes on angular correlation functions and clustering power spectra, as well as the constraints on cosmological parameters that can be obtained from the determinations of these quantities. The novel data relevant to derive the first sub-millimeter estimates of the local luminosity functions of starburst and late-type galaxies, and the constraints on the properties of rare source populations, such as blazars, are also briefly described.Comment: 16 pages, 10 figures. Accepted for publication on MNRA

    Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

    Get PDF
    We present the first spectroscopic metallicities of three M dwarfs with known or candidate planetary mass companions. We have analyzed high resolution, high signal-to-noise spectra of these stars which we obtained at McDonald Observatory. Our analysis technique is based on spectral synthesis of atomic and molecular features using recently revised cool-star model atmospheres and spectrum synthesis code. The technique has been shown to yield results consistent with the analyses of solar-type stars and allows measurements of M dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] = -0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These three M dwarf planet hosts have sub-solar metallicities, a surprising departure from the trend observed in FGK-type stars. This study is the first part of our ongoing work to determine the metallicities of the M dwarfs included in the McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ
    • …
    corecore