35,328 research outputs found

    XMM-Newton and Deep Optical Observations of the OTELO fields: the Groth-Westphal Strip

    Get PDF
    OTELO (OSIRIS Tunable Emission Line Object Survey) will be carried out with the OSIRIS instrument at the 10 m GTC telescope at La Palma, and is aimed to be the deepest and richest survey of emission line objects to date. The deep narrow-band optical data from OSIRIS will be complemented by means of additional observations that include: (i) an exploratory broad-band survey that is already being carried out in the optical domain, (ii) FIR and sub-mm observations to be carried with the Herschel space telescope and the GTM, and (iii) deep X-Ray observations from XMM-Newton and Chandra.Here we present a preliminary analysis of public EPIC data of one of the OTELO targets,the Groth-Westphal strip, gathered from the XMM-Newton Science Archive (XSA). EPIC images are combined with optical BVRI data from our broadband survey carried out with the 4.2m WHT at La Palma. Distance-independent diagnostics (involving X/O ratio, hardness ratios, B/T ratio) are tested.Comment: 2 pages, 2 figures, uses graphicx package. To appear in proceedings of "The X-Ray Universe 2005", San Lorenzo del Escorial, Spain, September 26-30, 200

    Near-infrared photometry of isolated spirals with and without an AGN. I: The Data

    Get PDF
    We present infrared imaging data in the J and K' bands obtained for 18 active spiral galaxies, together with 11 non active galaxies taken as a control sample. All of them were chosen to satisfy well defined isolation criteria so that the observed properties are not related to gravitational interaction. For each object we give: the image in the K' band, the sharp-divided image (obtained by dividing the observed image by a filtered one), the difference image (obtained by subtracting a model to the observed one), the color J-K' image, the ellipticity and position angle profiles, the surface brightness profiles in J and K', their fits by bulge+disk models and the color gradient. We have found that four (one) active (control) galaxies previously classified as non-barred turn out to have bars when observed in the near-infrared. One of these four galaxies (UGC 1395) also harbours a secondary bar. For 15 (9 active, 6 control) out of 24 (14 active, 10 control) of the optically classified barred galaxies (SB or SX) we find that a secondary bar (or a disk, a lense or an elongated ring) is present. The work presented here is part of a large program (DEGAS) aimed at finding whether there are differences between active and non active galaxies in the properties of their central regions that could be connected with the onset of nuclear activity.Comment: Accepted for publication in Astronomy & Astrophysics Supplement Serie

    Disentangling a dynamical Higgs

    Get PDF
    The pattern of deviations from Standard Model predictions and couplings is different for theories of new physics based on a non-linear realization of the SU(2)L×U(1)YSU(2)_L\times U(1)_Y gauge symmetry breaking and those assuming a linear realization. We clarify this issue in a model-independent way via its effective Lagrangian formulation in the presence of a light Higgs particle, up to first order in the expansions: dimension-six operators for the linear expansion and four derivatives for the non-linear one. Complete sets of pure gauge and gauge-Higgs operators are considered, implementing the renormalization procedure and deriving the Feynman rules for the non-linear expansion. We establish the theoretical relation and the differences in physics impact between the two expansions. Promising discriminating signals include the decorrelation in the non-linear case of signals correlated in the linear one: some pure gauge versus gauge-Higgs couplings and also between couplings with the same number of Higgs legs. Furthermore, anomalous signals expected at first order in the non-linear realization may appear only at higher orders of the linear one, and vice versa. We analyze in detail the impact of both type of discriminating signals on LHC physics.Comment: Version published in JHE

    Tin-selenium compounds at ambient and high pressures

    Full text link
    SnxSey crystalline compounds consisting of Sn and Se atoms of varying composition are systematically investigated at pressures from 0 to 100 GPa using the first-principles evolutionary crystal structure search method based on density functional theory (DFT). All known experimental phases of SnSe and SnSe2 are found without any prior input. A second order polymorphic phase transition from SnSe-Pnma phase to SnSe-Cmcm phase is predicted at 2.5 GPa. Initially being semiconducting, this phase becomes metallic at 7.3 GPa. Upon further increase of pressure up to 36.6 GPa, SnSe-Cmcm phase is transformed to CsCl-type SnSe-Pm3m phase, which remains stable at even higher pressures. A metallic compound with different stoichiometry, Sn3Se4-I43d, is found to be thermodynamically stable from 18 GPa to 70 GPa. Known semiconductor tin diselenide SnSe2-P3m1 phase is found to be thermodynamically stable from ambient pressure up to 18 GPa. Initially being semiconducting, it experiences metalization at pressures above 8 GPa
    • …
    corecore