50,049 research outputs found

    A nonperturbative Real-Space Renormalization Group scheme

    Full text link
    Based on the original idea of the density matrix renormalization group (DMRG), i.e. to include the missing boundary conditions between adjacent blocks of the blocked quantum system, we present a rigorous and nonperturbative mathematical formulation for the real-space renormalization group (RG) idea invented by L.P. Kadanoff and further developed by K.G. Wilson. This is achieved by using additional Hilbert spaces called auxiliary spaces in the construction of each single isolated block, which is then named a superblock according to the original nomenclature. On this superblock we define two maps called embedding and truncation for successively integrating out the small scale structure. Our method overcomes the known difficulties of the numerical DMRG, i.e. limitation to zero temperature and one space dimension.Comment: 13 pages, 5 figures, late

    Two and three electrons in a quantum dot: 1/|J| - expansion

    Full text link
    We consider systems of two and three electrons in a two-dimensional parabolic quantum dot. A magnetic field is applied perpendicularly to the electron plane of motion. We show that the energy levels corresponding to states with high angular momentum, J, and a low number of vibrational quanta may be systematically computed as power series in 1/|J|. These states are relevant in the high-B limit.Comment: LaTeX, 15 pages,6 postscript figure

    Point-wise mutual information-based video segmentation with high temporal consistency

    Full text link
    In this paper, we tackle the problem of temporally consistent boundary detection and hierarchical segmentation in videos. While finding the best high-level reasoning of region assignments in videos is the focus of much recent research, temporal consistency in boundary detection has so far only rarely been tackled. We argue that temporally consistent boundaries are a key component to temporally consistent region assignment. The proposed method is based on the point-wise mutual information (PMI) of spatio-temporal voxels. Temporal consistency is established by an evaluation of PMI-based point affinities in the spectral domain over space and time. Thus, the proposed method is independent of any optical flow computation or previously learned motion models. The proposed low-level video segmentation method outperforms the learning-based state of the art in terms of standard region metrics

    Experimental ratchet effect in superconducting films with periodic arrays of asymmetric potentials

    Get PDF
    A vortex lattice ratchet effect has been investigated in Nb films grown on arrays of nanometric Ni triangles, which induce periodic asymmetric pinning potentials. The vortex lattice motion yields a net dc-voltage when an ac driving current is applied to the sample and the vortex lattice moves through the field of asymmetric potentials. This ratchet effect is studied taking into account the array geometry, the temperature, the number of vortices per unit cell of the array and the applied ac currents.Comment: 15 pages, figures include
    corecore