4 research outputs found

    Methane Optical Density Measurements with an Integrated Path Differential Absorption Lidar from an Airborne Platform

    Get PDF
    We report on an airborne demonstration of atmospheric methane (CH4) measurements with an Integrated Path Differential Absorption (IPDA) lidar using an optical parametric amplifier (OPA) and optical parametric oscillator (OPO) laser transmitter and sensitive avalanche photodiode detector. The lidar measures the atmospheric CH4 absorption at multiple, discrete wavelengths near 1650.96 nm. The instrument was deployed in the fall of 2015, aboard NASA's DC-8 airborne laboratory along with an in-situ spectrometer and measured CH4 over a wide range of surfaces and atmospheric conditions from altitudes of 2 km to 13 km. In this paper, we will show the results from our flights, compare the performance of the two laser transmitters, and identify areas of improvement for the lidar

    Airborne Measurements of Atmospheric Methane Using Pulsed Laser Transmitters

    Get PDF
    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. At NASA Goddard Space Flight Center (GSFC) we have been developing a laser-based technology needed to remotely measure CH4 from orbit. We report on our development effort for the methane lidar, especially on our laser transmitters and recent airborne demonstration. Our lidar transmitter is based on an optical parametric process to generate near infrared laser radiation at 1651 nanometers, coincident with a CH4 absorption. In an airborne flight campaign in the fall of 2015, we tested two kinds of laser transmitters --- an optical parametric amplifier (OPA) and an optical parametric oscillator (OPO). The output wavelength of the lasers was rapidly tuned over the CH4 absorption by tuning the seed laser to sample the CH4 absorption line at several wavelengths. This approach uses the same Integrated Path Differential Absorption (IPDA) technique we have used for our CO2 lidar for ASCENDS. The two laser transmitters were successfully operated in the NASAs DC-8 aircraft, measuring methane from 3 to 13 kilometers with high precision

    Methane Measurements from Space: Technical Challenges and Solutions

    Get PDF
    We report on an airborne demonstration of atmospheric methane (CH4) measurements with an Integrated Path Differential Absorption (IPDA) lidar using an optical parametric oscillator (OPO) and optical parametric amplifier (OPA) laser transmitter and a sensitive avalanche photo detector. The lidar measures the CH4 absorption at multiple, discrete wavelengths around 1650.9 nm. In September 2015, the instrument was deployed on NASAs DC-8 airborne laboratory and measured atmospheric methane over a wide range of topography and weather conditions from altitudes of 3 km to 13 km. In this paper, we will review the results from our flights, and identify areas of improvement

    Fiber-Based Laser Transmitter at 1.57 Micrometers for Remote Sensing of Atmospheric Carbon Dioxide from Satellites

    Get PDF
    Over the past 20 years, NASA Goddard has successfully developed space-based lidar for remote sensing studies of the Earth and planets. The lidar in all missions to date have used diode pumped Nd:YAG laser transmitters. Recently we have been concentrating work on developing integrated path differential absorption (IPDA) lidar to measure greenhouse gases, with the goal of measurements from space. Due to the absorption spectrum of CO2 a fiber-based master oscillator power amplifier (MOPA) laser with a tunable seed source is an attractive laser choice. Fiber-based lasers offer a number of potential advantages for space, but since they are relatively new, challenges exist in developing them. In order to reduce risks for new missions using fiber-based lasers, we developed a 30- month plan to mature the technology of a candidate laser transmitter for space-based CO2 measurements to TRL-6. This work is also intended to reduce development time and costs and increase confidence in future mission success
    corecore