1,102 research outputs found

    Co-evolution of industry strategies and government policies: The case of the brazilian automotive industry

    Get PDF
    This study examines the evolution of the automotive industry in Brazil and its key drivers. We argue that the rules of the game – industry policies – are an outcome of exchanges between the host government and industry. These arise from changes in economic and political environments and interdependence between industry and the country’s economy. To this end, we draw upon literature on institutions and co-evolution to understand the industry footprint over a 50-year period, as well as its relationship with changes in government policies. This study generates new insights on institutional and co-evolution political perspectives by showing that the rules of the game are not only the making of the government, but are also the result of interdependencies between industry and government

    Validity of the Generalized Second Law of Thermodynamics of the Universe Bounded by the Event Horizon in Holographic Dark Energy Model

    Full text link
    In this letter, we investigate the validity of the generalized second law of thermodynamics of the universe bounded by the event horizon in the holographic dark energy model. The universe is chosen to be homogeneous and isotropic and the validity of the first law has been assumed here. The matter in the universe is taken in the form of non-interacting two fluid system- one component is the holographic dark energy model and the other component is in the form of dust.Comment: 8 page

    SO(10) unified models and soft leptogenesis

    Full text link
    Motivated by the fact that, in some realistic models combining SO(10) GUTs and flavour symmetries, it is not possible to achieve the required baryon asymmetry through the CP asymmetry generated in the decay of right-handed neutrinos, we take a fresh look on how deep this connection is in SO(10). The common characteristics of these models are that they use the see-saw with right-handed neutrinos, predict a normal hierarchy of masses for the neutrinos observed in oscillating experiments and in the basis where the right-handed Majorana mass is diagonal, the charged lepton mixings are tiny. In addition these models link the up-quark Yukawa matrix to the neutrino Yukawa matrix Y^\nu with the special feature of Y^\nu_{11}-> 0 Using this condition, we find that the required baryon asymmetry of the Universe can be explained by the soft leptogenesis using the soft B parameter of the second lightest right-handed neutrino whose mass turns out to be around 10^8 GeV. It is pointed out that a natural way to do so is to use no-scale supergravity where the value of B ~1 GeV is set through gauge-loop corrections.Comment: 26 pages, 2 figures. Added references, new appendix of a relevant fit and improved comment

    Entropy and universality of Cardy-Verlinde formula in dark energy universe

    Full text link
    We study the entropy of a FRW universe filled with dark energy (cosmological constant, quintessence or phantom). For general or time-dependent equation of state p=wρp=w\rho the entropy is expressed in terms of energy, Casimir energy, and ww. The correspondent expression reminds one about 2d CFT entropy only for conformal matter. At the same time, the cosmological Cardy-Verlinde formula relating three typical FRW universe entropies remains to be universal for any type of matter. The same conclusions hold in modified gravity which represents gravitational alternative for dark energy and which contains terms growing at low curvature. It is interesting that BHs in modified gravity are more entropic than in Einstein gravity. Finally, some hydrodynamical examples testing new shear viscosity bound, which is expected to be the consequence of the holographic entropy bound, are presented for the early universe in the plasma era and for the Kasner metric. It seems that the Kasner metric provides a counterexample to the new shear viscosity bound.Comment: LaTeX file, 39 pages, references are adde

    Absorption cross section in Lifshitz black hole

    Full text link
    We derive the absorption cross section of a minimally coupled scalar in the Lifshitz black hole obtained from the new massive gravity. The absorption cross section reduces to the horizon area in the low energy and massless limit of s-wave mode propagation, indicating that the Lifshitz black hole also satisfies the universality of low energy absorption cross section for black holes.Comment: 13 pages, 1 figure, version to appear in EPJ

    Phase transitions for the Lifshitz black holes

    Full text link
    We study possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes unlikely occurs because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes unlikely occurs in four dimensions since they have different asymptotes. This is consistent with a necessary condition for taking a phase transition in the gravitational system, which requires the same asymptote.Comment: 19 pages, 7 figures, a revised version to appear in EPJ

    Cosmological Effects of Radion Oscillations

    Full text link
    We show that the redshift of pressureless matter density due to the expansion of the universe generically induces small oscillations in the stabilized radius of extra dimensions (the radion field). The frequency of these oscillations is proportional to the mass of the radion and can have interesting cosmological consequences. For very low radion masses mbm_b (mb10100H01032eVm_b\sim10-100 H_0\simeq10^{-32} eV) these low frequency oscillations lead to oscillations in the expansion rate of the universe. The occurrence of acceleration periods could naturally lead to a resolution of the coincidence problem, without need of dark energy. Even though this scenario for low radion mass is consistent with several observational tests it has difficulty to meet fifth force constraints. If viewed as an effective Brans-Dicke theory it predicts ω=1+1D\omega=-1+\frac{1}{D} (DD is the number of extra dimensions), while experiments on scales larger than 1mm1mm imply ω>2500\omega>2500. By deriving the generalized Newtonian potential corresponding to a massive toroidally compact radion we demonstrate that Newtonian gravity is modified only on scales smaller than mb1m_b^{-1}. Thus, these constraints do not apply for mb>103eVm_b>10^{-3} eV (high frequency oscillations) corresponding to scales less than the current experiments (0.3mm0.3mm). Even though these high frequency oscillations can not resolve the coincidence problem they provide a natural mechanism for dark matter generation. This type of dark matter has many similarities with the axion.Comment: Accepted in Phys. Rev. D. Clarifying comments added in the text and some additional references include

    Universal procedure to cure future singularities of dark energy models

    Full text link
    A systematic search for different viable models of the dark energy universe, all of which give rise to finite-time, future singularities, is undertaken, with the purpose to try to find a solution to this common problem. After some work, a universal procedure to cure all future singularities is developed and carefully tested with the help of explicit examples corresponding to each one of the four different types of possible singularities, as classified in the literature. The cases of a fluid with an equation of state which depends on some parameter, of modified gravity non-minimally coupled to a matter Lagrangian, of non-local gravity, and of isotropic turbulence in a dark fluid universe theory are investigated in detail
    corecore