12 research outputs found

    Pesticides in soil, groundwater and food in Latin America as part of one health.

    Get PDF
    We here report of a conference about "Pesticides in Soil, Groundwater and Food in Latin America as part of One Health" that took place at the "IV Seminario Internacional de Sanidad Agropecuaria (SISA)" in Varadero, Cuba, 8-12 May 2023. Researchers of Latin America (Argentina, Brazil, Chile, Costa Rica, Colombia, Cuba, Mexico) and Switzerland (workshop initiator) held presentations about occurrence and effects of pesticides on the environment, human health, the replacement of highly hazardous pesticides (HHP) by agroecological alternatives and the agri-food value chain. In a subsequent round table discussion, the presenters identified deficits, needs, interests and opportunities. According to them, the lack of awareness of pesticide use affects the health and safety of workers applying the chemicals. Despite Latin America representing the main agricultural area in the world with a very intense pesticide use, monitoring data of pesticides in soil, surface and groundwaters, food, as well as in humans are missing. Risks of pesticides to humans should be assessed so that authorities can withdraw or limit within "short time" the access to corresponding formulations on the market. Also, communication is not state of the art and should be improved as, e.g. the teaching of workers and farmers, how to correctly use and apply pesticides or the briefing of decision makers. Pollinators suffer from multiple stressors not the least due to pesticides, and alternatives are badly needed. On the technical side, the different analytical methods to determine residues of active ingredients and transformation products in matrices of concern should be harmonized among laboratories.Seven future actions and goals were identified to overcome the above deficits. Next steps after the publishing of this conference report are to harmonize and complete the information status of the presenters by exchanging the results/data already present. Therefore, a platform of interaction to address issues described above and to enhance collaboration shall be created. Samples of different matrices shall be exchanged to harmonize the chemical analysis and establish interlaboratory comparisons. Such activities might be facilitated by joining international associations or organizations, where researchers can offer their expertise, or by forming a new pesticide network for Central and South America that could present tailored projects to national and international organizations and funding agencies

    Occurrence of Mycotoxins in Dried Fruits Worldwide, with a Focus on Aflatoxins and Ochratoxin A: A Review

    No full text
    Dried fruits are popular and nutritious snacks consumed worldwide due to their long shelf life and concentrated nutrient content. However, fruits can be contaminated with various toxigenic fungal species during different stages, including cultivation, harvesting, processing, drying, and storage. Consequently, these products may contain high levels of mycotoxins. This risk is particularly pronounced in developed countries due to the impact of climate change. Several factors contribute to mycotoxin production, including the type of fruit, geographical location, climate conditions, harvest treatments, and storage management practices. The main mycotoxins in dried fruits are aflatoxins (AFs) and ochratoxin A (OTA), which can induce human health problems and economic losses. Mycotoxin contamination can vary significantly depending on the geographic origin of dried fruits (vine fruits, figs, dates, apricots, prunes, and mulberries). The aim of this review was to fill the knowledge gap by consolidating data from various regions to understand the global picture and identify regions with higher contamination risks. By consolidating research from various origins and stages of the supply chain, the review intends to shed light on potential contamination events during pre-harvest, drying, storage, and trading, while also highlighting the effects of storage conditions and climate change on mycotoxin contamination

    Determination of 355 Pesticides in Lemon and Lemon Juice by LC-MS/MS and GC-MS/MS

    No full text
    While pesticides have become a primary tool in modern agriculture, these compounds remain a high priority on the list of consumer concerns regarding food safety. The use of pesticides in the production and post-harvesting of lemon fruits is widely used to ensure agricultural yield and fruit quality. Therefore, monitoring studies on citrus fruits to enforce regulatory compliance and ensure food safety is in great demand. The aim of this study was to monitor multi-class pesticide residues in lemon fruits commercialized in Turkey. The transmission of residues that existed on the outer surface of the fruit into its juice was also studied. Whole fruits and lemon juice samples were prepared using the quick, easy, cheap, effective, rugged and safe (QuEChERS) methodology prior to analysis. For the screening and quantification of 355 pesticide residues, liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) were used. The analytical method has been shown to have a sufficiently low limit of quantification with respect to current maximum residue limits (MRLs) for all target analytes. The obtained recovery and precision parameters fulfilled the requirements in DG SANTE guidelines. The in-house validated analytical method was then applied for the determination of 355 pesticide substances in 100 whole fruit samples and their juices. Sixteen different residues were detected in 43% of lemon fruits, whereas 57 lemon samples were pesticide-free. The MRLs exceedances were recorded in 29 lemon samples. The most frequently detected (17%) pesticide in lemon fruits was chlorpyrifos-methyl, with a range of 0.013–0.098 mg kg−1. A lower frequency was detected for metamitron (10%, 0.027–0.118 mg kg−1), buprofezin (9%, 0.023–0.076 mg kg−1), pyriproxyfen (9%, 0.021–0.102 mg kg−1) and malathion (7%, 0.100–0.482 mg kg−1) in whole fruits. However, none of the pesticide residues were detected in lemon juice samples. These results showed that target analytes are unable to penetrate the lemon exocarp and/or endocarp

    Monitoring and Exposure Assessment of Fosetyl Aluminium and Other Highly Polar Pesticide Residues in Sweet Cherry

    No full text
    Cherries are popular fruits due to their health benefits, organoleptic quality, and attractive appearance. Since highly polar pesticides are of low mass and amphoteric character, and are not amenable to traditional multi-residue extraction methods, they are more commonly not included in the pesticide monitoring program. This study aims to determine twelve highly polar pesticide residues in cherry samples intended for export from Turkey. A total of 16,022 cherry samples from 2018–2020 harvests in four production areas of Turkey were analyzed using a modification of the Quick Polar Pesticides method and liquid chromatography-tandem mass spectrometry. The method was validated at two fortification levels (0.01 and 0.05 mg kg−1), and good recoveries (87.4–111.4%) and relative standard deviations (<6%) were achieved for all analytes. The limits of quantification were in the range of 1.08–2.55 μg kg−1. Overall, 28.4% of the analyzed cherry samples were detected with phosphonic acid, calculated as fosetyl aluminium (fosetyl-Al) in amounts up to 77.7 mg kg−1. For 2304 samples (14.4%), the residues exceeded the European Union maximum residue level of 2 mg kg−1. There is no reason to be concerned about long-term exposure to phosphonic acid/fosetyl-Al, and the other highly polar pesticides through the consumption of sweet cherry

    Pesticide-Residue Analysis in Soils by the QuEChERS Method: A Review

    No full text
    Pesticides are among the most important contaminants worldwide due to their wide use, persistence, and toxicity. Their presence in soils is not only important from an environmental point of view, but also for food safety issues, since such residues can migrate from soils to food. However, soils are extremely complex matrices, which present a challenge to any analytical chemist, since the extraction of a wide range of compounds with diverse physicochemical properties, such as pesticides, at trace levels is not an easy task. In this context, the QuEChERS method (standing for quick, easy, cheap, effective, rugged, and safe) has become one of the most green and sustainable alternatives in this field due to its inherent advantages, such as fast sample preparation, the minimal use of hazardous reagents and solvents, simplicity, and low cost. This review is aimed at providing a critical revision of the most relevant modifications of the QuEChERS method (including the extraction and clean-up steps of the method) for pesticide-residue analysis in soils

    Covalent Organic Frameworks in Sample Preparation

    No full text
    Covalent organic frameworks (COFs) can be classified as emerging porous crystalline polymers with extremely high porosity and surface area size, and good thermal stability. These properties have awakened the interests of many areas, opening new horizons of research and applications. In the Analytical Chemistry field, COFs have found an important application in sample preparation approaches since their inherent properties clearly match, in a good number of cases, with the ideal characteristics of any extraction or clean-up sorbent. The review article is meant to provide a detailed overview of the different COFs that have been used up to now for sample preparation (i.e., solid-phase extraction in its most relevant operational modes—conventional, dispersive, magnetic/solid-phase microextraction and stir-bar sorptive extraction); the extraction devices/formats in which they have been applied; and their performances and suitability for this task

    Dissipation kinetics of organophosphorus pesticides in milled toasted maize and wheat flour (gofio) during storage

    No full text
    The dissipation/degradation of the pesticides dimethoate, terbufos, disulfoton, and pirimiphos-methyl were evaluated in milled toasted maize and wheat flour (gofio) during three months of storage. Their dissipation kinetics and residual levels were determined, as well as their possible decomposition into some of their main transformation products (disulfoton sulfoxide, terbufos sulfone and disulfoton sulfone). For this purpose, pesticide-free milled toasted maize and wheat samples were spiked with the pesticides, and they were then stored in the darkness at ambient temperature in a closed container to simulate current storage conditions of such packed food. A multiresidue analysis based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method was performed for the simultaneous determination of these pesticides and their metabolites. After three months of storage, the dissipation of residues ranged between 34% (pirimiphos-methyl) and 86% (disulfoton) for maize gofio and between 69% (terbufos) and 92% (disulfoton and pirimiphos-methyl) for wheat gofio. The results demonstrated that the degradation was slower in gofio than in wheat gofio and that none of the selected metabolites were detected in any of the samples. Dissipation curves of all studied pesticides fitted to a first-order decay curve in both types of cereals.B.S.R. would like to thank the Canary Agency of Economy, Industry, Trade and Knowledge of the Government of the Canary Islands for the FPI fellowship (co-financed with an 85% from European Social Funds).Peer reviewe

    Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective

    No full text
    The circular economy (CE) has been proposed as a potentially significant catalyst to enhance the current response to the global climate crisis. The objective of this study was to investigate the scientific literature of the research between climate change and CE adopting a knowledge mapping approach. Based on a total of 789 peer-reviewed publications extracted from Scopus, we found that research on climate change and CE is continually growing and interdisciplinary in nature. Europe notably leads scientific production. Keyword evolution shows that CE has been influenced by more lines of research than climate change. We also found that waste management is the CE approach most associated with climate change, mitigation is the climate action most impacted by CE, and food is the most reported greenhouse gas (GHG)-emitting material. However, there are knowledge gaps in the integration of the social dimension, the promotion of climate change adaptation, and the association of sustainable development goal (SDG) 13. Finally, we identified four potentially valuable directions for future studies: (i) CE practices, (ii) bioeconomy, (iii) climate and energy, and (iv) sustainability and natural resources, in which carbon recovery technologies, green materials, regional supply chains, circular agriculture models, and nature-based solutions are promising themes

    Research Trends on Climate Change and Circular Economy from a Knowledge Mapping Perspective

    No full text
    The circular economy (CE) has been proposed as a potentially significant catalyst to enhance the current response to the global climate crisis. The objective of this study was to investigate the scientific literature of the research between climate change and CE adopting a knowledge mapping approach. Based on a total of 789 peer-reviewed publications extracted from Scopus, we found that research on climate change and CE is continually growing and interdisciplinary in nature. Europe notably leads scientific production. Keyword evolution shows that CE has been influenced by more lines of research than climate change. We also found that waste management is the CE approach most associated with climate change, mitigation is the climate action most impacted by CE, and food is the most reported greenhouse gas (GHG)-emitting material. However, there are knowledge gaps in the integration of the social dimension, the promotion of climate change adaptation, and the association of sustainable development goal (SDG) 13. Finally, we identified four potentially valuable directions for future studies: (i) CE practices, (ii) bioeconomy, (iii) climate and energy, and (iv) sustainability and natural resources, in which carbon recovery technologies, green materials, regional supply chains, circular agriculture models, and nature-based solutions are promising themes
    corecore