212 research outputs found

    Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding

    Full text link
    [EN] Bilayer films from thermoplastic starch and cast amorphous PLA were obtained by compression moulding, incorporating or not cinnamaldehyde in the PLA layer. Films were characterized as to their microstructure and barrier, tensile and optical properties, as well as thermal behaviour, X-ray diffraction pattern and FTIR spectra. Bilayers using semicrystalline PLA, instead of starch, were also analysed for comparison purposes. Despite the lower ratio of cast PLA sheet in the bilayer assembly (about 1/3 of the film thickness), a great improvement in tensile and water vapour barrier properties was achieved with respect to the net starch films, the films maintaining high transparency and oxygen permeability as low as starch films. When cinnamaldehyde was included in the cast PLA sheet, films became thinner dim to the losses of the volatile active during processing, but the improvement in barrier properties was maintained, with lower mechanical resistance. Thermal analyses revealed diffusion of cinnamaldehyde or low molecular weight compounds from cast PLA layer to the adhered sheets (starch or semicrystalline PLA) which contributed to plasticizing the amorphous regions and affected crystallization pattern of PLA, as also revealed by the X-ray diffraction patterns. The obtained results offer an interesting option to obtain high barrier-highly resistant active films from thermoplastic starch and amorphous PLA, including cinnamaldehyde as active compound.The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Justine Muller thanks the Generalitat Valenciana for the Santiago Grisolia Grant (GRISOLIA/2014/003). Authors acknowledge the support of Elmira Arab-Tehrany from LIBio, University of Lorraine (France), for the research stay of Justine Muller carrying out the ATR-FTIR and X-Ray Diffraction analyses.Muller, J.; González Martínez, MC.; Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal. 95:56-70. https://doi.org/10.1016/j.eurpolymj.2017.07.019S56709

    The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes

    Full text link
    [EN] Lecithin-encapsulated carvacrol has been incorporated into poly (vinyl alcohol) (PVA) for the purpose of obtaining active films for food packaging application. The influence of molecular weight (Mw) and degree of hydrolysis (DH) of the polymer on its ability to retain carvacrol has been analysed, as well as the changes in the film microstructure, thermal behaviour, and functional properties as packaging material provoked by liposome incorporation into PVA matrices. The films were obtained by casting the PVA aqueous solutions where liposomes were incorporated until reaching 0 (non-loaded liposomes), 5 or 10 g carvacrol per 100 g polymer. The non-acetylated, high Mw polymer provided films with a better mechanical performance, but less CA retention and a more heterogeneous structure. In contrast, partially acetylated, low Mw PVA gave rise to more homogenous films with a higher carvacrol content. Lecithin enhanced the thermal stability of both kinds of PVA, but reduced the crystallinity degree of non-acetylated PVA films, although it did not affect this parameter in acetylated PVA when liposomes contained carvacrol. The mechanical and barrier properties of the films were modified by liposome incorporation in line with the induced changes in crystallinity and microstructure of the films.This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. Doctoral grant of author Johana Andrade was funded by the Departamento de Narino-Colombia y la Fundacion CEIBAAndrade, J.; González Martínez, MC.; Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers. 12(2):1-18. https://doi.org/10.3390/polym12020497S118122Thong, C. C., Teo, D. C. L., & Ng, C. K. (2016). Application of polyvinyl alcohol (PVA) in cement-based composite materials: A review of its engineering properties and microstructure behavior. Construction and Building Materials, 107, 172-180. doi:10.1016/j.conbuildmat.2015.12.188Li, R., Wang, Y., Xu, J., Ahmed, S., & Liu, Y. (2019). Preparation and Characterization of Ultrasound Treated Polyvinyl Alcohol/Chitosan/DMC Antimicrobial Films. Coatings, 9(9), 582. doi:10.3390/coatings9090582Muppalaneni, srinath. (2013). Polyvinyl Alcohol in Medicine and Pharmacy: A Perspective. Journal of Developing Drugs, 02(03). doi:10.4172/2329-6631.1000112Cano, A., Fortunati, E., Cháfer, M., Kenny, J. M., Chiralt, A., & González-Martínez, C. (2015). Properties and ageing behaviour of pea starch films as affected by blend with poly(vinyl alcohol). Food Hydrocolloids, 48, 84-93. doi:10.1016/j.foodhyd.2015.01.008Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446-475. doi:10.1016/j.fct.2007.09.106De Vincenzi, M., Stammati, A., De Vincenzi, A., & Silano, M. (2004). Constituents of aromatic plants: carvacrol. Fitoterapia, 75(7-8), 801-804. doi:10.1016/j.fitote.2004.05.002Veldhuizen, E. J. A., Tjeerdsma-van Bokhoven, J. L. M., Zweijtzer, C., Burt, S. A., & Haagsman, H. P. (2006). Structural Requirements for the Antimicrobial Activity of Carvacrol. Journal of Agricultural and Food Chemistry, 54(5), 1874-1879. doi:10.1021/jf052564yGursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805-810. doi:10.1016/j.foodchem.2018.11.134Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001Cofelice, Cuomo, & Chiralt. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces, 3(3), 58. doi:10.3390/colloids3030058Requena, R., Vargas, M., & Chiralt, A. (2017). Release kinetics of carvacrol and eugenol from poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) films for food packaging applications. European Polymer Journal, 92, 185-193. doi:10.1016/j.eurpolymj.2017.05.008Sánchez-González, L., Chiralt, A., González-Martínez, C., & Cháfer, M. (2011). Effect of essential oils on properties of film forming emulsions and films based on hydroxypropylmethylcellulose and chitosan. Journal of Food Engineering, 105(2), 246-253. doi:10.1016/j.jfoodeng.2011.02.028Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004Asbahani, A. E., Miladi, K., Badri, W., Sala, M., Addi, E. H. A., Casabianca, H., … Elaissari, A. (2015). Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 483(1-2), 220-243. doi:10.1016/j.ijpharm.2014.12.069Callegarin, F., Quezada Gallo, J.-A., Debeaufort, F., & Voilley, A. (1997). Lipids and biopackaging. Journal of the American Oil Chemists’ Society, 74(10), 1183-1192. doi:10.1007/s11746-997-0044-xCoimbra, M., Isacchi, B., van Bloois, L., Torano, J. S., Ket, A., Wu, X., … Schiffelers, R. M. (2011). Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. International Journal of Pharmaceutics, 416(2), 433-442. doi:10.1016/j.ijpharm.2011.01.056Sebaaly, C., Greige-Gerges, H., Stainmesse, S., Fessi, H., & Charcosset, C. (2016). Effect of composition, hydrogenation of phospholipids and lyophilization on the characteristics of eugenol-loaded liposomes prepared by ethanol injection method. Food Bioscience, 15, 1-10. doi:10.1016/j.fbio.2016.04.005Sebaaly, C., Charcosset, C., Stainmesse, S., Fessi, H., & Greige-Gerges, H. (2016). Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor. Carbohydrate Polymers, 138, 75-85. doi:10.1016/j.carbpol.2015.11.053Carvalho, I. T., Estevinho, B. N., & Santos, L. (2015). Application of microencapsulated essential oils in cosmetic and personal healthcare products - a review. International Journal of Cosmetic Science, 38(2), 109-119. doi:10.1111/ics.12232Hammoud, Z., Gharib, R., Fourmentin, S., Elaissari, A., & Greige-Gerges, H. (2019). New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. International Journal of Pharmaceutics, 561, 161-170. doi:10.1016/j.ijpharm.2019.02.022Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075Andreuccetti, C., Carvalho, R. A., Galicia-García, T., Martínez-Bustos, F., & Grosso, C. R. F. (2011). Effect of surfactants on the functional properties of gelatin-based edible films. Journal of Food Engineering, 103(2), 129-136. doi:10.1016/j.jfoodeng.2010.10.007Perdones, Á., Chiralt, A., & Vargas, M. (2016). Properties of film-forming dispersions and films based on chitosan containing basil or thyme essential oil. Food Hydrocolloids, 57, 271-279. doi:10.1016/j.foodhyd.2016.02.006Limpan, N., Prodpran, T., Benjakul, S., & Prasarpran, S. (2012). Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids, 29(1), 226-233. doi:10.1016/j.foodhyd.2012.03.007Reiner, G. N., Fraceto, L. F., Paula, E. de, Perillo, M. A., & García, D. A. (2013). Effects of Gabaergic Phenols on Phospholipid Bilayers as Evaluated by <sup>1</sup>H-NMR. Journal of Biomaterials and Nanobiotechnology, 04(03), 28-34. doi:10.4236/jbnb.2013.43a004Reiner, G. N., Perillo, M. A., & García, D. A. (2013). Effects of propofol and other GABAergic phenols on membrane molecular organization. Colloids and Surfaces B: Biointerfaces, 101, 61-67. doi:10.1016/j.colsurfb.2012.06.004Andrade, J., González-Martínez, C., & Chiralt, A. (2020). Effect of carvacrol in the properties of films based on poly (vinyl alcohol) with different molecular characteristics. Polymer Degradation and Stability, 179, 109282. doi:10.1016/j.polymdegradstab.2020.109282Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT, 113, 108290. doi:10.1016/j.lwt.2019.108290Abral, H., Hartono, A., Hafizulhaq, F., Handayani, D., Sugiarti, E., & Pradipta, O. (2019). Characterization of PVA/cassava starch biocomposites fabricated with and without sonication using bacterial cellulose fiber loadings. Carbohydrate Polymers, 206, 593-601. doi:10.1016/j.carbpol.2018.11.054Altan, A., Aytac, Z., & Uyar, T. (2018). Carvacrol loaded electrospun fibrous films from zein and poly(lactic acid) for active food packaging. Food Hydrocolloids, 81, 48-59. doi:10.1016/j.foodhyd.2018.02.028Buendía−Moreno, L., Sánchez−Martínez, M. J., Antolinos, V., Ros−Chumillas, M., Navarro−Segura, L., Soto−Jover, S., … López−Gómez, A. (2020). Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control, 107, 106763. doi:10.1016/j.foodcont.2019.106763Neira, L. M., Martucci, J. F., Stejskal, N., & Ruseckaite, R. A. (2019). Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids, 94, 304-310. doi:10.1016/j.foodhyd.2019.03.020Trindade, G. G. G., Thrivikraman, G., Menezes, P. P., França, C. M., Lima, B. S., Carvalho, Y. M. B. G., … Araújo, A. A. S. (2019). Carvacrol/β-cyclodextrin inclusion complex inhibits cell proliferation and migration of prostate cancer cells. Food and Chemical Toxicology, 125, 198-209. doi:10.1016/j.fct.2019.01.003Taladrid, D., Marín, D., Alemán, A., Álvarez-Acero, I., Montero, P., & Gómez-Guillén, M. C. (2017). Effect of chemical composition and sonication procedure on properties of food-grade soy lecithin liposomes with added glycerol. Food Research International, 100, 541-550. doi:10.1016/j.foodres.2017.07.052Pinilla, C. M. B., Thys, R. C. S., & Brandelli, A. (2019). Antifungal properties of phosphatidylcholine-oleic acid liposomes encapsulating garlic against environmental fungal in wheat bread. International Journal of Food Microbiology, 293, 72-78. doi:10.1016/j.ijfoodmicro.2019.01.006Cristancho, D., Zhou, Y., Cooper, R., Huitink, D., Aksoy, F., Liu, Z., … Seminario, J. M. (2013). Degradation of polyvinyl alcohol under mechanothermal stretching. Journal of Molecular Modeling, 19(8), 3245-3253. doi:10.1007/s00894-013-1828-6Cai, H., Dave, V., Gross, R. A., & McCarthy, S. P. (1996). Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). Journal of Polymer Science Part B: Polymer Physics, 34(16), 2701-2708. doi:10.1002/(sici)1099-0488(19961130)34:163.0.co;2-sMcHugh, T. H., & Krochta, J. M. (1994). Sorbitol- vs Glycerol-Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation. Journal of Agricultural and Food Chemistry, 42(4), 841-845. doi:10.1021/jf00040a001Restrepo, I., Medina, C., Meruane, V., Akbari-Fakhrabadi, A., Flores, P., & Rodríguez-Llamazares, S. (2018). The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polímeros, 28(2), 169-177. doi:10.1590/0104-1428.03117Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384-391. doi:10.1016/j.jfoodeng.2010.03.004Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chemistry, 120(1), 193-198. doi:10.1016/j.foodchem.2009.10.006Jiménez, A., Sánchez-González, L., Desobry, S., Chiralt, A., & Tehrany, E. A. (2014). Influence of nanoliposomes incorporation on properties of film forming dispersions and films based on corn starch and sodium caseinate. Food Hydrocolloids, 35, 159-169. doi:10.1016/j.foodhyd.2013.05.00

    Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(epsilon-caprolactone) nanofibres. Application in starch multilayer films

    Full text link
    [EN] Electrospun poly-(epsilon-caprolactone) (PCL) fibre mats encapsulating Carvacrol (CA) were obtained with good encapsulation efficiency (85%) and CA load (11% in the fibre). These mats were effective at controlling the growth of Escherichia coli, when the surface density of CA loaded fibres was 1.2 or 1.8 mg/cm2, in line with the CA released into the culture medium that exceeded the MIC of the bacteria. However, they were not effective at controlling the growth of Listeria innocua, since a greater release of CA was necessary to achieve the MIC of this bacterium. It was not only the CA load in the fibres, but also its release capacity in the media that determined the antimicrobial effect. The fibre showed higher release rate and ratio in less polar simulants, D1 (50% ethanol) and D2 (isooctane) (representing fatty foodstuff), where practically the total amount of CA was released; whereas in more polar systems (simulants A (10% ethanol) and B (3% acetic acid)) a more limited CA delivery (60-75%) occurred, at a slower rate. The antimicrobial action of the active PCL mats was reproduced in multilayer starch films containing the CA-loaded electrospun PCL fibres between two starch sheets, with a slightly delayed response. In the multilayer films, a great reduction in the water vapour permeability was also observed with respect to that of starch films, without relevant changes in other functional properties of the films for packaging purposes.The authors thank the Ministerio de Economia y Competitividad (MINECO) of Spain, for the financial support for this study as a part of projects AGL2013-42989-R and AGL2016-76699-R. The author A. Tampau thanks MINECO for the pre-doctoral research grant # BES-2014-068100.Tampau, A.; González Martínez, MC.; Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(epsilon-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids. 79:158-169. https://doi.org/10.1016/j.foodhyd.2017.12.021S1581697

    Polylactic acid based materials encapsulating carvacrol obtained by solvent casting and electrospinning

    Full text link
    [EN] Polylactic acid (PLA) dissolved (15 wt.%) in ethyl acetate (EtAc): dimethyl sulfoxide (DMSO) binary systems (0:1; 1:3, and 2:3 v/v) was used as carrier to obtain carvacrol (CA)-loaded (20 wt.% with respect to PLA) matrices by electrospinning, in comparison with solvent casting. Field emission scanning electron microscopy (FESEM) observations showed that CA-loaded electrospun fibers were thinner than the CA-free ones, and their encapsulating efficiency (EE) increased when EtAc was present in the solvent. The cast films had higher EE (up to 89%) than the electrospun mats (maximum 68%). Thermogravimetric analysis and differential scanning calorimetry revealed that CA-free matrices retain more solvent than the samples with CA; this effect is being more noticeable in fibers rather than in cast films. The thermal analysis revealed stronger retention forces of CA in the fibers than in the cast material and the CA plasticizing effect in the PLA matrices, in accordance with its retained amount. Practical Application The carvacrol-loaded polylactic acid materials obtained in this study are intended to serve as possible active layer in obtaining active (antimicrobial and/or antioxidant) multilayer materials for the packaging of foodstuffs, when applied onto a supporting polymer layer. Active properties of the material, as well as the potential carvacrol sensory impact, in packaged products should be assessed in further studies.The authors thank the Ministerio de Economia y Competitividad (MINECO) of Spain, for the financial support for this study as part of the project AGL2016-76699-R. The author A. Tampau also thanks MINECO for the predoctoral research grant #BES-2014-068100.Tampau, A.; González Martínez, MC.; Chiralt Boix, MA. (2020). Polylactic acid based materials encapsulating carvacrol obtained by solvent casting and electrospinning. Journal of Food Science (Online). 85(4):1177-1185. https://doi.org/10.1111/1750-3841.15094S1177118585

    Water interactions and microstructure of chitosan-methylcellulose composite films as affected by ionic concentration

    Full text link
    [EN] Edible films based on high molecular weight chitosan (CH) and methylcellulose (MC) were obtained by mixing different ratios (0:1, 0.5:1.5, 1.0:1.0, 1.5:0.5 and 1:0) of the biopolymers in two solvent conditions (0.95 and 6.85 mmol of ions per g polymer). In order to characterize the dry films, water sorption isotherms, water vapour permeability and film microstructure were evaluated. Water vapour permeability of CH-MC composite films was significantly affected by both the CH-MC ratio and the ionic concentration in the matrix. This can be attributed to the influence of ions on polymer chain packaging during the film formation and their role in the water uptake capacity of the films which affects the water transport properties. (C) 2011 Elsevier Ltd. All rights reserved.The authors acknowledge the financial support provided by Ministerio de Educacion y Ciencia (Spain) for the Project AGL2007-65503. The authors also acknowledge the Electronic Microscopy Service of Universidad Politecnica de Valencia for their assistance in the use of SEM.Vargas, M.; Albors, A.; Chiralt, A.; González Martínez, MC. (2011). Water interactions and microstructure of chitosan-methylcellulose composite films as affected by ionic concentration. LWT - Food Science and Technology. 44(10):2290-2295. https://doi.org/10.1016/j.lwt.2011.02.018S22902295441

    Antioxidant starch films containing sunflower hull extracts

    Full text link
    [EN] This study exploits sunflower hulls that are by-product from food industry for the extraction of valuable antioxidant compounds that can be used to produce antioxidant food packaging material based on starch. Fast and easy methanolic extraction of milled hulls resulted in an antioxidant extract with 137 mg GAE/100 g hulls and an antioxidant activity against DPPH* with an EC50 value of 73.5 mg raw hull material/ mg DPPH* and chlorogenic acid as main active compound. Already low amounts of extracts (1-6%) were sufficient to produce compression molded starch-glycerol films with antioxidant capacity without the loss of barrier properties. Films with the highest content of antioxidant extract showed the highest antioxidant activity and the lowest oxygen and water vapor permeability. These films were tough but less stretchable. A potential industrial use of these starch films could be in antioxidant packaging as a very thin layer in multilayer food packaging as oxygen barrier and antioxidant capacity.This work was supported by the Swedish Research Council Formas [2015-00550] and by the project AGL2016-76699-R from Spanish Ministerio de Educacion y Ciencia. The authors would like to acknowledge Grefusa (Alzira, Spain) for the donated sunflower hull waste.Menzel, C.; González Martínez, MC.; Chiralt, A.; Vilaplana, F. (2019). Antioxidant starch films containing sunflower hull extracts. Carbohydrate Polymers. 214:142-151. https://doi.org/10.1016/j.carbpol.2019.03.022S14215121

    Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol

    Full text link
    [EN] The biodegradation and disintegration of thermoplastic starch multilayers containing carvacrol(CA)-loaded poly-(epsilon-caprolactone) electrospun mats were evaluated under thermophilic composting conditions for 45 and 84 days, respectively, and compared with non-loaded carvacrol films and pure starch films. Sample mass loss, thermogravimetric and visual analyses were performed throughout the disintegration test. The disintegration behaviour of all multilayers was similar, reaching values of 75-80% after 84 days. Biodegradation, assessed by carbon dioxide measurements, revealed that all the carvacrol-free films completely biodegraded after 25 composting days. However, the presence of CA notably affected the compost inoculum activity, thus limiting the biodegradability of the CA-loaded multilayers to a maximum value of around 85% after 45 days. Nevertheless, this value was close to that established by the standard ISO method to qualify as biodegradable material.The authors thank the Ministerio de Economia y Competitividad (MINECO, Spain) for funding this study through the pre-doctoral grant BES-2014-068100 and through the investigation project AGL2016-76699-R.Tampau, A.; González Martínez, MC.; Chiralt Boix, MA. (2020). Biodegradability and disintegration of multilayer starch films with electrospun PCL fibres encapsulating carvacrol. Polymer Degradation and Stability. 173:1-8. https://doi.org/10.1016/j.polymdegradstab.2020.109100S18173Thompson, R. C., Moore, C. J., vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2153-2166. doi:10.1098/rstb.2009.0053Jahan, S., Strezov, V., Weldekidan, H., Kumar, R., Kan, T., Sarkodie, S. A., … Wilson, S. P. (2019). Interrelationship of microplastic pollution in sediments and oysters in a seaport environment of the eastern coast of Australia. Science of The Total Environment, 695, 133924. doi:10.1016/j.scitotenv.2019.133924Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., … Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environmental Pollution, 214, 177-184. doi:10.1016/j.envpol.2016.04.012Renzi, M., Guerranti, C., & Blašković, A. (2018). Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin, 131, 248-251. doi:10.1016/j.marpolbul.2018.04.035Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T., & Turra, A. (2016). Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Marine Pollution Bulletin, 106(1-2), 183-189. doi:10.1016/j.marpolbul.2016.02.074Watts, A. J. R., Urbina, M. A., Corr, S., Lewis, C., & Galloway, T. S. (2015). Ingestion of Plastic Microfibers by the Crab Carcinus maenas and Its Effect on Food Consumption and Energy Balance. Environmental Science & Technology, 49(24), 14597-14604. doi:10.1021/acs.est.5b04026Jinhui, S., Sudong, X., Yan, N., Xia, P., Jiahao, Q., & Yongjian, X. (2019). Effects of microplastics and attached heavy metals on growth, immunity, and heavy metal accumulation in the yellow seahorse, Hippocampus kuda Bleeker. Marine Pollution Bulletin, 149, 110510. doi:10.1016/j.marpolbul.2019.110510Qiao, R., Deng, Y., Zhang, S., Wolosker, M. B., Zhu, Q., Ren, H., & Zhang, Y. (2019). Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere, 236, 124334. doi:10.1016/j.chemosphere.2019.07.065Heimowska, A., Morawska, M., & Bocho-Janiszewska, A. (2017). Biodegradation of poly(ε-caprolactone) in natural water environments. Polish Journal of Chemical Technology, 19(1), 120-126. doi:10.1515/pjct-2017-0017Ortega-Toro, R., Contreras, J., Talens, P., & Chiralt., A. (2015). Physical and structural properties and thermal behaviour of starch-poly(ɛ-caprolactone) blend films for food packaging. Food Packaging and Shelf Life, 5, 10-20. doi:10.1016/j.fpsl.2015.04.001Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021Tampau, A., González-Martinez, C., & Chiralt, A. (2017). Carvacrol encapsulation in starch or PCL based matrices by electrospinning. Journal of Food Engineering, 214, 245-256. doi:10.1016/j.jfoodeng.2017.07.005Ramos, M., Jiménez, A., Peltzer, M., & Garrigós, M. C. (2012). Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. Journal of Food Engineering, 109(3), 513-519. doi:10.1016/j.jfoodeng.2011.10.031Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., & Gontard, N. (2007). Antimicrobial Paper Based on a Soy Protein Isolate or Modified Starch Coating Including Carvacrol and Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 55(6), 2155-2162. doi:10.1021/jf0626009Ultee, A., Bennik, M. H. J., & Moezelaar, R. (2002). The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Applied and Environmental Microbiology, 68(4), 1561-1568. doi:10.1128/aem.68.4.1561-1568.2002Tunc, S., Chollet, E., Chalier, P., Preziosi-Belloy, L., & Gontard, N. (2007). Combined effect of volatile antimicrobial agents on the growth of Penicillium notatum. International Journal of Food Microbiology, 113(3), 263-270. doi:10.1016/j.ijfoodmicro.2006.07.004Tepe, B., Sokmen, M., Akpulat, H. A., Daferera, D., Polissiou, M., & Sokmen, A. (2005). Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. Journal of Food Engineering, 66(4), 447-454. doi:10.1016/j.jfoodeng.2004.04.015Gursul, S., Karabulut, I., & Durmaz, G. (2019). Antioxidant efficacy of thymol and carvacrol in microencapsulated walnut oil triacylglycerols. Food Chemistry, 278, 805-810. doi:10.1016/j.foodchem.2018.11.134(2012). Scientific Opinion on the safety and efficacy of phenol derivatives containing ring-alkyl, ring-alkoxy and side-chains with an oxygenated functional group (chemical group 25) when used as flavourings for all species. EFSA Journal, 10(2), 2573. doi:10.2903/j.efsa.2012.2573Kavoosi, G., Dadfar, S. M. M., Mohammadi Purfard, A., & Mehrabi, R. (2013). Antioxidant and Antibacterial Properties of Gelatin Films Incorporated with Carvacrol. Journal of Food Safety, 33(4), 423-432. doi:10.1111/jfs.12071López-Mata, M., Ruiz-Cruz, S., Silva-Beltrán, N., Ornelas-Paz, J., Zamudio-Flores, P., & Burruel-Ibarra, S. (2013). Physicochemical, Antimicrobial and Antioxidant Properties of Chitosan Films Incorporated with Carvacrol. Molecules, 18(11), 13735-13753. doi:10.3390/molecules181113735Higueras, L., López-Carballo, G., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2014). Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. International Journal of Food Microbiology, 188, 53-59. doi:10.1016/j.ijfoodmicro.2014.07.018Balaguer, M. P., Villanova, J., Cesar, G., Gavara, R., & Hernandez-Munoz, P. (2015). Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chemical Engineering Journal, 262, 447-455. doi:10.1016/j.cej.2014.09.099Cano, A. I., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Biodegradation behavior of starch-PVA films as affected by the incorporation of different antimicrobials. Polymer Degradation and Stability, 132, 11-20. doi:10.1016/j.polymdegradstab.2016.04.014Talón, E., Vargas, M., Chiralt, A., & González-Martínez, C. (2019). Eugenol incorporation into thermoprocessed starch films using different encapsulating materials. Food Packaging and Shelf Life, 21, 100326. doi:10.1016/j.fpsl.2019.100326Castro-Aguirre, E., Auras, R., Selke, S., Rubino, M., & Marsh, T. (2017). Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation and Stability, 137, 251-271. doi:10.1016/j.polymdegradstab.2017.01.017Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt Boix, A. (2018). Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. Journal of Renewable Materials, 6(7), 599-610. doi:10.32604/jrm.2018.00127Sreekumar, P. A., Al-Harthi, M. A., & De, S. K. (2012). Studies on compatibility of biodegradable starch/polyvinyl alcohol blends. Polymer Engineering & Science, 52(10), 2167-2172. doi:10.1002/pen.23178Singh, R. ., Pandey, J. ., Rutot, D., Degée, P., & Dubois, P. (2003). Biodegradation of poly(ε-caprolactone)/starch blends and composites in composting and culture environments: the effect of compatibilization on the inherent biodegradability of the host polymer. Carbohydrate Research, 338(17), 1759-1769. doi:10.1016/s0008-6215(03)00236-2Yang, H.-S., Yoon, J.-S., & Kim, M.-N. (2005). Dependence of biodegradability of plastics in compost on the shape of specimens. Polymer Degradation and Stability, 87(1), 131-135. doi:10.1016/j.polymdegradstab.2004.07.016Murphy, C. A., Cameron, J. A., Huang, S. J., & Vinopal, R. T. (1996). Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology, 62(2), 456-460. doi:10.1128/aem.62.2.456-460.1996Murphy, C. A., Cameron, J. A., Huang, S. J., & Vinopal, R. T. (1998). A second polycaprolactone depolymerase from Fusarium , a lipase distinct from cutinase. Applied Microbiology and Biotechnology, 50(6), 692-696. doi:10.1007/s002530051352Tokiwa, Y., Calabia, B., Ugwu, C., & Aiba, S. (2009). Biodegradability of Plastics. International Journal of Molecular Sciences, 10(9), 3722-3742. doi:10.3390/ijms10093722Banerjee, A., Chatterjee, K., & Madras, G. (2015). Enzymatic degradation of polycaprolactone–gelatin blend. Materials Research Express, 2(4), 045303. doi:10.1088/2053-1591/2/4/045303Shen, J., & Bartha, R. (1997). Priming effect of glucose polymers in soil-based biodegradation tests. Soil Biology and Biochemistry, 29(8), 1195-1198. doi:10.1016/s0038-0717(97)00031-

    Study of the release of limonene present in chitosan films enriched with bergamot oil in food simulants

    Full text link
    [EN] Chitosan films containing different concentrations of bergamot oil (BO) were obtained and the migration of limonene, the major oil component, to five liquid food simulants (aqueous solutions with 0%, 10%, 50% and 95% of ethanol and isooctane) was studied at 20 degrees C. The losses of BO and limonene during the film drying were also quantified. The release kinetics of limonene from chitosan matrix was described using an empirical model which relates the reduced concentration loss of limonene and the square root of time. The results show that kinetic constants for all films increased exponentially when the ethanol concentration increased in the aqueous system and were slightly greater when the film thickness was lower. Composite films remain intact in isooctane CH-BO and no release of limonene was observed. Hydration of the film to promote molecular mobility was essential to ensure the compound release. (C) 2011 Elsevier Ltd. All rights reserved.The author L. Sanchez-Gonzalez thanks the Ministerio de Educacion y Ciencia (Spain) for a FPU Grant (AP2006-026).Sánchez González, L.; Cháfer Nácher, MT.; González Martínez, MC.; Chiralt, A.; Desobry, S. (2011). Study of the release of limonene present in chitosan films enriched with bergamot oil in food simulants. Journal of Food Engineering. 105(1):138-143. https://doi.org/10.1016/j.jfoodeng.2011.02.016S138143105

    Determinación de los sólidos solubles de un alimento con un alto y un bajo contenido en agua

    Full text link
    El objetivo de este artículo docente consiste en que el alumno sea capaz de calcular los sólidos solubles por gramo de muestra de un alimento con un alto y un bajo contenido en agua a partir de su humedad y oBrix.Pastor Navarro, C.; González Martínez, MC. (2018). Determinación de los sólidos solubles de un alimento con un alto y un bajo contenido en agua. http://hdl.handle.net/10251/102969DE

    Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch

    Full text link
    [EN] Cinnamaldehyde (CIN) loaded amorphous PLA films were obtained by casting, using ethyl acetate as solvent. Likewise, bilayer films were obtained by thermocompression of the PLA active layer and compression moulded cassava starch (S) films or semi crystalline PLA films. Starch-PLA laminated materials were considered to improve the barrier capacity (high oxygen barrier through the starch layer and high water vapour capacity through the polyester layer), while CIN incorporation confers antimicrobial activity on the films. The PLA bilayers were obtained for comparison purposes. The antimicrobial activity of the CIN loaded PLA films and S bilayer films was proved against Escherichia coli and Listeria Innocua through in vitro tests, which indicates that the active amount released into the growth medium exceeded the minimum inhibitory concentration (MIC) of both bacteria. The release kinetics of the active compound in different food simulants demonstrated that a part of CIN was tightly bonded to the PLA matrix, whereas the free compound diffused more easily through the starch layer, making S bilayers more active against the bacteria when the starch layer was in direct contact with the culture medium. CIN entrapped in PLA bilayers did not exhibited any antibacterial effect due to its release inhibition, associated to its bonding within the PLA matrix and the lower degree of relaxation in the semi crystalline PLA layer in contact with the food simulants.The authors thank the Ministerio de Economia y Competitividad (Spain) for the financial support provided through Project AGL2013-42989-R and AGL2016-76699-R. Author Justine Muller thanks the Generalitat Valenciana for the Santiago Grisolia Grant (GRISOLIA/2014/003).Muller, J.; Casado Quesada, A.; González Martínez, MC.; Chiralt, A. (2017). Antimicrobial properties and release of cinnamaldehyde in bilayer films based on polylactic acid (PLA) and starch. European Polymer Journal. 96:316-325. https://doi.org/10.1016/j.eurpolymj.2017.09.009S3163259
    corecore