22 research outputs found

    Biocompatibility of a self-assembled glycol chitosan nanogel

    Get PDF
    The research of chitosan-based nanogel for biomedical applications has grown exponentially in the last years; however, its biocompatibility is still insufficiently reported. Hence, the present work provides a thorough study of the biocompatibility of a glycol chitosan (GC) nanogel. The obtained results showed that GC nanogel induced slight decrease on metabolic activity of RAW, 3T3 and HMEC cell cultures, although no effect on cell membrane integrity was verified. The nanogel does not promote cell death by apoptosis and/or necrosis, exception made for the HMEC cell line challenged with the higher GC nanogel concentration. Cell cycle arrest on G1 phase was observed only in the case of RAW cells. Remarkably, the nanogel is poorly internalized by bone marrow derived macrophages and does not trigger the activation of the complement system. GC nanogel blood compatibility was confirmed through haemolysis and whole blood clotting time assays. Overall, the results demonstrated the safety of the use of the GC nanogel as drug delivery system.Paula Pereira thanks FCT, the Ph.D. grant ref SFRH/BD/64977/2009. This work was also supported by a grant from the Spanish Ministry of Economy and Competitivity (SAF2011-30337-C02-02). We also acknowledge the European Union Seventh Framework Programme [FP7/REGPOT-2012-2013.1] under grant agreement BIOCAPS-316265. MP acknowledges fellowship from Spanish Ministry of Education (FPU predoctoral grant program)

    Disease phenotypes in adult patients with suspected undifferentiated autoinflammatory diseases and PFAPA syndrome: Clinical and therapeutic implications

    Get PDF
    Background: Undifferentiated autoinflammatory diseases are characterized by recurrent or persistent fever, usually combined with other inflammatory manifestations, and negative or inconclusive genetic studies for monogenic autoinflammatory disorders. Aims: To define and characterize disease phenotypes in adult patients diagnosed in an adult reference center with undifferentiated autoinflammatory diseases, and to analyze the efficacy of the drugs used in order to provide practical diagnostic and therapeutic recommendations. Methods: Retrospective study (2015-2022) of patients with undifferentiated autoinflammatory diseases among all patients visited in our reference center. Demographic, clinical, laboratory features and detailed therapeutic information was collected. Results: Of the 334 patients with a suspected autoinflammatory disease, 134 (40%) patients (61% women) were initially diagnosed with undifferentiated autoinflammatory diseases. Mean age at disease onset and at diagnosis was 28.7 and 37.7 years, respectively. In 90 (67.2%) patients, symptoms started during adulthood. Forty-four (32.8%) patients met diagnostic/classification criteria for adult periodic fever with aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome. In the remaining patients, four additional phenotypes were differentiated according to the predominant manifestations: a) Predominantly fever phenotype (n = 18; 13.4%); b) Predominantly abdominal/pleuritic pain phenotype (n = 9; 6.7%); c) Predominantly pericarditis phenotype (n = 18; 13.4%), and d) Complex syndrome phenotype (n = 45; 33.6%). Prednisone (mainly on demand), colchicine and anakinra were the drugs commonly used. Overall, complete responses were achieved with prednisone in 41.3%, colchicine in 40.2%, and anakinra in 58.3% of patients in whom they were used. By phenotypes, prednisone on demand was more effective in adult PFAPA syndrome and colchicine in patients with the abdominal/pleuritic pain pattern and PFAPA syndrome. Patients with complex syndrome achieved complete responses with prednisone (21.9%), colchicine (25.7%) and anakinra (44.4%), and were the group more often requiring additional immunosuppressive drugs. Conclusions: The analysis of the largest single-center series of adult patients with undifferentiated autoinflammatory diseases identified and characterized different disease phenotypes and their therapeutic approaches. This study is expected to contribute to increase the awareness of physicians for an early identification of these conditions, and to provide the best known therapeutic options

    Izaña Atmospheric Research Center. Activity Report 2015-2016

    Get PDF
    This report is a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues

    Characterization of Tajogaite volcanic plumes detected over the Iberian Peninsula from a set of satellite and ground-based remote sensing instrumentation

    Get PDF
    Three volcanic plumes were detected during the Tajogaite volcano eruptive activity (Canary Islands, Spain, September–December 2021) over the Iberian Peninsula. The spatiotemporal evolution of these events is characterised by combining passive satellite remote sensing and ground-based lidar and sun-photometer systems. The inversion algorithm GRASP is used with a suite of ground-based remote sensing instruments such as lidar/ ceilometer and sun-photometer from eight sites at different locations throughout the Iberian Peninsula. Satellite observations showed that the volcanic ash plumes remained nearby the Canary Islands covering a mean area of 120 ± 202 km2 during the whole period of eruptive activity and that sulphur dioxide plumes reached the Iberian Peninsula

    Izaña Atmospheric Research Center. Activity Report 2019-2020

    Get PDF
    Editors: Emilio Cuevas, Celia Milford and Oksana Tarasova.[EN]The Izaña Atmospheric Research Center (IARC), which is part of the State Meteorological Agency of Spain (AEMET), is a site of excellence in atmospheric science. It manages four observatories in Tenerife including the high altitude Izaña Atmospheric Observatory. The Izaña Atmospheric Observatory was inaugurated in 1916 and since that date has carried out uninterrupted meteorological and climatological observations, contributing towards a unique 100-year record in 2016. This reports are a summary of the many activities at the Izaña Atmospheric Research Center to the broader community. The combination of operational activities, research and development in state-of-the-art measurement techniques, calibration and validation and international cooperation encompass the vision of WMO to provide world leadership in expertise and international cooperation in weather, climate, hydrology and related environmental issues.[ES]El Centro de Investigación Atmosférica de Izaña (CIAI), que forma parte de la Agencia Estatal de Meteorología de España (AEMET), representa un centro de excelencia en ciencias atmosféricas. Gestiona cuatro observatorios en Tenerife, incluido el Observatorio de Izaña de gran altitud, inaugurado en 1916 y que desde entonces ha realizado observaciones meteorológicas y climatológicas ininterrumpidas y se ha convertido en una estación centenaria de la OMM. Estos informes resumen las múltiples actividades llevadas a cabo por el Centro de Investigación Atmosférica de Izaña. El liderazgo del Centro en materia de investigación y desarrollo con respecto a las técnicas de medición, calibración y validación de última generación, así como la cooperación internacional, le han otorgado una reputación sobresaliente en lo que se refiere al tiempo, el clima, la hidrología y otros temas ambientales afines

    AERO-MAP: A data compilation and modelling approach to understand spatial variability in fine and coarse mode aerosol composition

    Get PDF
    Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, change the surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. High particulate matter concentrations at the surface represent an important public health hazard. There are substantial datasets describing aerosol particles in the literature or in public health databases, but they have not been compiled for easy use by the climate and air quality modelling community. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output. Overall, most of the planet or even the land fraction does not have sufficient observations of surface concentrations, and especially particle composition to understand the current distribution of particles. Most climate models exclude 10–30 % of the aerosol particles in both PM2.5 and PM10 size fractions across large swaths of the globe in their current configurations, with ammonium nitrate and agricultural dust aerosol being the most important omitted aerosol types

    Newer generations of multi-target CAR and STAb-T immunotherapeutics: NEXT CART Consortium as a cooperative effort to overcome current limitations

    Get PDF
    Adoptive T cellular immunotherapies have emerged as relevant approaches for treating cancer patients who have relapsed or become refractory (R/R) to traditional cancer treatments. Chimeric antigen receptor (CAR) T-cell therapy has improved survival in various hematological malignancies. However, significant limitations still impede the widespread adoption of these therapies in most cancers. To advance in this field, six research groups have created the “NEXT Generation CART MAD Consortium” (NEXT CART) in Madrid’s Community, which aims to develop novel cell-based immunotherapies for R/R and poor prognosis cancers. At NEXT CART, various basic and translational research groups and hospitals in Madrid concur to share and synergize their basic expertise in immunotherapy, gene therapy, and immunological synapse, and clinical expertise in pediatric and adult oncology. NEXT CART goal is to develop new cell engineering approaches and treatments for R/R adult and pediatric neoplasms to evaluate in multicenter clinical trials. Here, we discuss the current limitations of T cell-based therapies and introduce our perspective on future developments. Advancement opportunities include developing allogeneic products, optimizing CAR signaling domains, combining cellular immunotherapies, multi-targeting strategies, and improving tumor-infiltrating lymphocytes (TILs)/T cell receptor (TCR) therapy. Furthermore, basic studies aim to identify novel tumor targets, tumor molecules in the tumor microenvironment that impact CAR efficacy, and strategies to enhance the efficiency of the immunological synapse between immune and tumor cells. Our perspective of current cellular immunotherapy underscores the potential of these treatments while acknowledging the existing hurdles that demand innovative solutions to develop their potential for cancer treatment fully
    corecore