25 research outputs found

    Collection of substantial amount of fine and ultrafine particles during the combustion of miscanthus and forest residues in small and medium scale boilers for morphological and chemical characterizations

    Get PDF
    Renewable energies are destined to play a very important role in the future world energy balance. Among these energies, biomass production and utilization is growing considerably since it offers the possibility to provide partial substitution of fossil fuels. If health impacts of fine particles (PM2.5) from diesel combustion are well documented (Gangwar et al., 2012), those from biomass combustion need substantial information and improvements. Size fractionations of PM2.5 have to be performed in order to both determine morphological and chemical characteristics, these properties being essential for biological effects. Particulate matter was sampled during combustion of miscanthus and forest residues in medium and small scale biomass boilers (400 kW from Köb Pyrot and 40 kW from REKA). Fly ashes from medium scale boiler were sampled with a cyclone device and their granulometry was studied with both optical microscope and Malvern laser granulometer. PM2.5 (sized in the range of 0.4 μm to 2.07 μm) from low scale boiler were sampled using a DEKATI DGI impactor modified for substantial PM collection. A quick overview of setup modifications for manual impactor will be developed. Particles were observed using fluorescence microscopy. A semi-quantitative method to compare fly ashes fluorescence was developped using ImageJ (Schneider et al., 2012). Speciation of organic compounds Polycyclic Aromatic Hydrocarbon (PAH) and Humic Like Substances (HULIS) was determined on PM2.5 and fly ashes. A correlation between observed fluorescence and concentration was attempted

    Recovery of an Agro-industrial Vinasse by Adsorption on Different Wood Materials: Parametric Study at Laboratory Scale

    No full text
    Three types of biomasses (miscanthus, spruce, and a mixture of different woodchips species) were tested as low-cost adsorption media for an industrial agro-industrial effluent, typically a vinasse. Influences of effluent dilution, working temperature, and time duration were studied. Kinetic modelling studies of adsorption were proposed. Ratios of adsorption at ambient temperature and without dilution expressed in g of dry vinasse per g of dry biomass were 1.0, 0.85, and 0.65 for miscanthus, woodchips mixture, and spruce, respectively. An increase of the temperature from 10 °C to 50 °C led to a decrease of the vinasse viscosity and favored its penetration in the biomasses. Maximal adsorbance of dry matter of vinasse was obtained at 50 °C for a vinasse viscosity of 20 mPas. Whatever the experimental conditions required during adsorption processes, miscanthus showed the best affinity for the vinasse. Pseudo-second order and intra-particle diffusion model well described the adsorption process. This study indicates that conventional biomasses could be used as natural low-cost adsorbent for by-products such as vinasse
    corecore