5 research outputs found

    RF thermal and new cold part design studies on TTF-III input coupler for Project-X

    Full text link
    RF power coupler is one of the key components in superconducting (SC) linac. It provides RF power to the SC cavity and interconnects different temperature layers (1.8K, 4.2K, 70K and 300K). TTF-III coupler is one of the most promising candidates for the High Energy (HE) linac of Project X, but it cannot meet the average power requirements because of the relatively high temperature rise on the warm inner conductor, some design modifications will be required. In this paper, we describe our simulation studies on the copper coating thickness on the warm inner conductor with RRR value of 10 and 100. Our purpose is to rebalance the dynamic and static loads, and finally lower the temperature rise along the warm inner conductor. In addition, to get stronger coupling, better power handling and less multipacting probability, one new cold part design was proposed using 60mm coaxial line; the corresponding multipacting simulation studies have also been investigated.Comment: 5 pages, 12 figures. Submitted to Chinese Physics C (Formerly High Energy Physics and Nuclear Physics

    COMPARISON OF BUFFERED CHEMICAL POLISHED AND ELECTROPOLISHED 3.9 GHZ CAVITIES*

    No full text
    Abstract Five 3.9 GHz 9 cell cavities have been measured for the DESY FLASH module. These cavities were BCP processed and reached gradients of typically about 25 MV/m with Q drop starting at about 20 MV/m. Recently a few one cell cavities have been processed with EP and at least one has tested to a gradient of 30 MV/m with Q drop starting at about 25 MV/m. We will compare the results and give an update to the thermal analysis in relation to global thermal breakdown at 3.9 GHz

    Leukämien

    No full text
    corecore