24 research outputs found
Knockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle
Stromal interaction molecule 1 (STIM1) is a recently discovered membrane-spanning protein thought to sense lumenal Ca2+ in sarco(endo)plasmic reticulum (SR/ER) and transduce activation of Ca2+-permeable store-operated channels (SOC) in plasmalemma in response to SR/ER Ca2+ depletion. To evaluate the role of STIM1 and a closely related protein, STIM2, in Ca2+ signaling of rat distal pulmonary arterial smooth muscle cells (PASMC) during hypoxia, we used fluorescent microscopy and the Ca2+-sensitive dye, fura 2, to measure basal intracellular Ca2+ concentration ([Ca2+]i), store-operated Ca2+ entry (SOCE), and increases in [Ca2+]i caused by acute hypoxia (4% O2) or depolarization (60 mmol/l KCl) in cells treated with small interfering RNA targeted to STIM1 (siSTIM1) or STIM2 (siSTIM2). As determined by real-time quantitative PCR analysis (qPCR), STIM1 mRNA was 200-fold more abundant than STIM2 in untreated control PASMC. siSTIM1 and siSTIM2 caused specific and significant knockdown of both mRNA measured by qPCR and protein measured by Western blotting. siSTIM1 markedly inhibited SOCE and abolished the sustained [Ca2+]i response to hypoxia but did not alter the initial transient [Ca2+]i response to hypoxia, the [Ca2+]i response to depolarization, or basal [Ca2+]i. The only effect of siSTIM2 was a smaller inhibition of SOCE. We conclude that STIM1 was quantitatively more important than STIM2 in activation of SOC in rat distal PASMC and that the increase in [Ca2+]i induced by acute hypoxia in these cells required SR Ca2+ release and STIM1-dependent activation of SOC
Table_1_Intense pulsed light for inactivating planktonic and biofilm molds in food.docx
It has been reported that about a quarter of the world’s agriculture products is unable to be consumed each year because of mold contamination, resulting in incalculable economic losses. Despite modern food technology and the various preservation techniques available, the problem of mold contamination of food is still not adequately controlled. In this study, we simulated the biofilm formed by Aspergillus niger and Penicillium glaucum in liquid and solid food in 96 well cell culture plates and polycarbonate membrane models, respectively, and investigated the fungicidal effect of IPL on planktonic and biofilm molds at three different capacitance parameters at room and refrigerator temperatures. The results show that IPL can achieve fungicidal rates of over 99% for planktonic molds and over 90% for biofilm molds, and that the smaller the capacitance, the more frequent the irradiation required to achieve the same fungicidal rate. In addition, temperature, A. niger or Penicillium glaucum have no effect on the fungicidal effect of IPL. We believe that IPL is a promising non-thermal physical sterilization technique for fungal inhibition on food surfaces.</p
Upregulation of gelatinases and epithelial-mesenchymal transition in small airway remodeling associated with chronic exposure to wood smoke.
BACKGROUND: Peribronchiolar fibrosis is an important feature of small airway remodeling (SAR) in cigarette smoke-induced COPD. The aim of this study was to investigate the role of gelatinases (MMP9, MMP2) and epithelial-mesenchymal transition (EMT) in SAR related to wood smoke (WS) exposure in a rat model. METHODS: Forty-eight female Sprague-Dawley rats were randomly divided into the WS group, the cigarette smoke (CS) group and the clean air control group. After 4 to 7 months of smoke exposure, lung tissues were examined with morphometric measurements, immunohistochemistry and Western blotting. Serum MMP9 and TIMP1 concentrations were detected by ELISA. In vitro, primary rat tracheal epithelial cells were stimulated with wood smoke condensate for 7 days. RESULTS: The COPD-like pathological alterations in rats exposed chronically to WS were similar to those exposed to CS; the area of collagen deposition was significantly increased in the small airway walls of those exposed to WS or CS for 7 months. The expression of gelatinases in rats induced by WS or CS exposure was markedly increased in whole lung tissue, and immunohistochemistry showed that MMP9, MMP2 and TIMP1 were primarily expressed in the airway epithelium. The serum levels of MMP9 and TIMP1 were significantly higher in rats secondary to WS or CS exposure. Few cells that double immunostained for E-cadherin and vimentin were observed in the airway subepithelium of rats exposed to WS for 7 months (only 3 of these 8 rats). In vitro, the expression of MMP9 and MMP2 proteins was upregulated in primary rat tracheal epithelial cells following exposure to wood smoke condensate for 7 days by Western blotting; positive immunofluorescent staining for vimentin and type I collagen was also observed. CONCLUSIONS: These findings suggest that the upregulation of gelatinases and EMT might play a role in SAR in COPD associated with chronic exposure to wood smoke
Nicotine Elevated Intracellular Ca 2+
Background: Chronic obstructive pulmonary disease (COPD) is characterized by airway remodeling with airway smooth muscle (ASM) hypertrophy and hyperplasia. Since tobacco use is the key risk factor for the development of COPD and intracellular Ca2+ concentration ([Ca2+]i) plays a major role in both cell proliferation and differentiation, we hypothesized that nicotinic acetylcholine receptor (nAChR) activation plays a role in the elevation of [Ca2+]i in airway smooth muscle cells (ASMCs). Methods: We examined the expression of nAChR and characterized the functions of α7-nAChR in ASMCs. Results: RT-PCR analysis showed that α2-7, β2, and β3-nAChR subunits are expressed in rat ASMCs, with α7 being one of the most abundantly expressed subtypes. Chronic nicotine exposure increased α7-nAChR mRNA and protein expression, and elevated resting [Ca2+]i in cultured rat ASMCs. Acute application of nicotine evoked a rapid increase in [Ca2+]i in a concentration-dependent manner, and the response was significantly enhanced in ASMCs cultured with 1 µM nicotine for 48 hours. Nicotine-induced Ca2+ response was reversibly blocked by the α7-nAChR nicotinic antagonists, methyllycaconitine and α-bungarotoxin. Small interfering RNA suppression of α7-nAChR also substantially blunted the Ca2+ responses induced by nicotine. Conclusion: These observations suggest that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling.that nicotine elevates [Ca2+]i in ASMCs through α7-nAChR-mediated signals pathways, and highlight the possibility that α7-nAChR can be considered as a potential target for the treatment of airway remodeling
Sildenafil inhibits chronically hypoxic upregulation of canonical transient receptor potential expression in rat pulmonary arterial smooth muscle
In pulmonary arterial smooth muscle cells (PASMCs), Ca2+ influx through store-operated Ca2+ channels thought to be composed of canonical transient receptor potential (TRPC) proteins is an important determinant of intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. Sildenafil, a type V phosphodiesterase inhibitor that increases cellular cGMP, is recently identified as a promising agent for treatment of pulmonary hypertension. We previously demonstrated that chronic hypoxia elevated basal [Ca2+]i in PASMCs due in large part to enhanced store-operated Ca2+ entry (SOCE); moreover, ex vivo exposure to prolonged hypoxia (4% O2 for 60 h) upregulated TRPC1 and TRPC6 expression in PASMCs. We examined the effect of sildenafil on basal [Ca2+]i, SOCE, and the expression of TRPC in PASMCs under prolonged hypoxia exposure. We also examined the effect of sildenafil on TRPC1 and TRPC6 expression in pulmonary arterial smooth muscle (PA) from rats that developed chronically hypoxic pulmonary hypertension (CHPH). Compared with vehicle control, treatment with sildenafil (300 nM) inhibited prolonged hypoxia induced increases of 1) basal [Ca2+]i, 2) SOCE, and 3) mRNA and protein expression of TRPC in PASMCs. Moreover, sildenafil (50 mg · kg−1 · day−1) inhibited mRNA and protein expression of TRPC1 and TRPC6 in PA from chronically hypoxic (10% O2 for 21 days) rats, which was associated with decreased right ventricular pressure and right ventricular hypertrophy. Furthermore, we found, in PASMCs exposed to prolonged hypoxia, that knockdown of TRPC1 or TRPC6 by their specific small interference RNA attenuated the hypoxic increases of SOCE and basal [Ca2+]i, suggesting a cause and effect link between increases of TRPC1 and TRPC6 expression and the hypoxic increases of SOCE and basal [Ca2+]i. These results suggest that sildenafil may alter basal [Ca2+]i in PASMCs by decreasing SOCE through downregulation of TRPC1 and TRPC6 expression, thereby contributing to decreased vascular tone of pulmonary arteries during the development of CHPH
Nicotine-Induced Airway Smooth Muscle Cell Proliferation Involves TRPC6-Dependent Calcium Influx Via α7 nAChR
Background/Aims: The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. Methods: Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). Results: The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. Conclusion: Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling
Expression of store-operated Ca2+ entry and transient receptor potential canonical and vanilloid-related proteins in rat distal pulmonary venous smooth muscle
Chronic hypoxia causes remodeling and alters contractile responses in both pulmonary arteries and pulmonary veins. Although pulmonary arteries have been studied extensively in these disorders, the mechanisms by which pulmonary veins respond to hypoxia and whether these responses contribute to chronic hypoxic pulmonary hypertension remain poorly understood. In pulmonary arterial smooth muscle, we have previously demonstrated that influx of Ca2+ through store-operated calcium channels (SOCC) thought to be composed of transient receptor potential (TRP) proteins is likely to play an important role in development of chronic hypoxic pulmonary hypertension. To determine whether this mechanism could also be operative in pulmonary venous smooth muscle, we measured intracellular Ca2+ concentration ([Ca2+]i) by fura-2 fluorescence microscopy in primary cultures of pulmonary venous smooth muscle cells (PVSMC) isolated from rat distal pulmonary veins. In cells perfused with Ca2+-free media containing cyclopiazonic acid (10 μM) and nifedipine (5 μM) to deplete sarcoplasmic reticulum Ca2+ stores and block voltage-dependent Ca2+ channels, restoration of extracellular Ca2+ (2.5 mM) caused marked increases in [Ca2+]i, whereas MnCl2 (200 μM) quenched fura-2 fluorescence, indicating store-operated Ca2+ entry (SOCE). SKF-96365 and NiCl2, antagonists of SOCC, blocked SOCE at concentrations that did not alter Ca2+ responses to 60 mM KCl. Of the seven known canonical TRP (TRPC1–7) and six vanilloid-related TRP channels (TRPV1–6), real-time PCR revealed mRNA expression of TRPC1 > TRPC6 > TRPC4 > TRPC2 ≈ TRPC5 > TRPC3, TRPV2 > TRPV4 > TRPV1 in distal PVSMC, and TRPC1 > TRPC6 > TRPC3 > TRPC4 ≈ TRPC5, TRPV2 ≈ TRPV4 > TRPV1 in rat distal pulmonary vein (PV) smooth muscle. Western blotting confirmed protein expression of TRPC1, TRPC6, TRPV2, and TRPV4 in both PVSMC and PV. Our results suggest that SOCE through Ca2+ channels composed of TRP proteins may contribute to Ca2+ signaling in rat distal PV smooth muscle
Quercetin prevents osteoarthritis progression possibly via regulation of local and systemic inflammatory cascades
Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague–Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups