34 research outputs found

    Association between pregnancy and pregnancy loss with COPD in Chinese women: The China Kadoorie Biobank study

    Get PDF
    Background Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by airflow blockage. Pregnancy and pregnancy loss may be related to an elevated risk of COPD, although studies have yet to report on this association. Hence, this study aims to investigate the association between pregnancy and pregnancy loss with the risk of COPD among Chinese women. Methods Data on 302,510 female participants from the China Kadoorie Biobank were utilized for this study. Multivariable logistic regression, stratified by sociodemographic and lifestyle factors, was employed to obtain the odds ratio (ORs) and 95% confidence intervals (CIs) for the association between pregnancy and pregnancy loss with COPD. Results Pregnancy loss was significantly associated with increased risk of COPD (OR 1.19, 95% CI 1.13–1.25), specifically, spontaneous (OR 1.19, 95% CI 1.11–1.29) and induced abortion (OR 1.18, 95% CI 1.12–1.25). Stillbirth, however, was not significantly associated with the risk of COPD (OR 1.09, 95% CI 0.99–1.20). Increasing number of pregnancy losses was associated with increasing risk of COPD (one pregnancy loss: OR 1.14, 95% CI 1.07–1.21, two or more pregnancy loss: OR 1.25, 95% CI 1.17–1.32, and each additional pregnancy loss: OR 1.06, 95% CI 1.03–1.09). A single pregnancy was significantly associated with reduced risk of COPD (OR 0.75, 95% CI 0.59–0.97), although each additional pregnancy was significantly associated with increased risk of COPD (OR 1.03, 95% CI 1.01–1.04). Conclusion Pregnancy loss, in particular, spontaneous and induced abortions are associated with increased risk of COPD among Chinese women. A single pregnancy, however, demonstrated protective effects

    TNF-α and IFN-γ synergistically inhibit the repairing ability of mesenchymal stem cells on mice colitis and colon cancer.

    Get PDF
    BACKGROUND(#br)Mesenchymal stem cells (MSCs) can be efficiently recruited to wound, inflammatory and tumor sites to repair and regenerate tissue. However, its role in colitis and colitis associated colon cancer is still controversial. This study was designed to evaluate the role and mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer.(#br)METHODS(#br)We selected two well-characterized pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), to expand the inflammatory microenvironment of MSCs. The severity of colitis and colon cancer was evaluated by measuring colon length, Myeloperoxidase (MPO) activity, Hematoxylin-eosin staining, Western Blot, Immunohistochemistry and Immunofluorescence. These techniques were also performed to analyze the mechanisms of inflammatory cytokines-activated-MSCs in mice colitis and colon cancer. Real-time PCR and Enzyme-linked Immunosorbent Assay (ELISA) were used to measure the secretion of pro-inflammatory factors.(#br)RESULTS(#br)We found that the incubation of MSCs with TNF-α and IFN-γ aggravates colitis, where high levels of pro-inflammatory factors, such as interleukin (IL)-17, IL-8, IL-12, IL-1β, transforming growth factor (TGF)-β, TNF-α and IFN-γ, were secreted. Furthermore, this phenomenon was associated with the activation of the nuclear factor-kappa-B (NF-κB)/Signal transducer and activator of transcription three (STAT3) pathway. In addition, our study demonstrated that TNF-α and IFN-γ pretreated MSCs synergistically exacerbated mice colon cancer, which was closely associated with angiogenesis.(#br)CONCLUSIONS(#br)Taken together, these results indicate that TNF-α and IFN-γ pretreatment effectively inhibited the repair ability of MSCs and accelerated inflammation and tumor progression involving NF-κB/STAT3 pathway and angiogenesis-related factors

    Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT

    Get PDF
    Abstract(#br)Ovarian cancer is one of the most lethal gynecological cancers; owning to its late detection and chemoresistance, understanding the pathogenesis of this malignant tumor is much critical. Previous studies have reported that ubiquitin-specific peptidase 39 (USP39) is generally overexpressed in a variety of cancers, including hepatocellular carcinoma, gastric cancer and so forth. Furthermore, USP39 is proved to be associated with the proliferation of malignant tumors. However, the function and mechanism of USP39 in ovarian cancer have not been elucidated. In the present study, we observed that USP39 was frequently overexpressed in human ovarian cancer and was highly correlated with TNM stage. Suppression of USP39 markedly inhibited the growth and migration of ovarian cancer cell..

    Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT.

    Get PDF
    Ovarian cancer is one of the most lethal gynecological cancers; owning to its late detection and chemoresistance, understanding the pathogenesis of this malignant tumor is much critical. Previous studies have reported that ubiquitin-specific peptidase 39 (USP39) is generally overexpressed in a variety of cancers, including hepatocellular carcinoma, gastric cancer and so forth. Furthermore, USP39 is proved to be associated with the proliferation of malignant tumors. However, the function and mechanism of USP39 in ovarian cancer have not been elucidated. In the present study, we observed that USP39 was frequently overexpressed in human ovarian cancer and was highly correlated with TNM stage. Suppression of USP39 markedly inhibited the growth and migration of ovarian cancer cell lines HO-8910 and SKOV3 and induced cell cycle G2/M arrest. Moreover, knockdown of USP39 inhibited ovarian tumor growth in a xenograft model. In addition, our findings indicated that cell cycle arrest induced by USP39 knockdown might be involved in p53/p21 signaling pathway. Furthermore, we found that the depletion of USP39 inhibited the migration of ovarian cancer cells via blocking epithelial-mesenchymal transition. Taken together, these results suggest that USP39 may play vital roles in the genesis and progression and may serve as a potential biomarker for diagnosis and therapeutic target of ovarian cancer

    Non-classical Plate Models Incorporating Microstructure and Surface Energy Effects: Their Variational Formulations and Applications

    Get PDF
    In this dissertation research, new non-classical models for Kirchhoff and Mindlin plates are developed and applied to study band gaps for flexural wave propagation in composite plate structures. In Chapter 2, a new non-classical model for a Kirchhoff plate resting on an elastic foundation is developed using a modified couple stress theory, a surface elasticity theory and a two-parameter elastic foundation model. A variational formulation based on Hamilton’s principle is employed, which leads to the simultaneous determination of the equations of motion and the complete boundary conditions and provides a unified treatment of the microstructure, surface energy and foundation effects. The new plate model contains a material length scale parameter to account for the microstructure effect, three surface elastic constants to describe the surface energy effect, and two foundation moduli to represent the foundation effect. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all suppressed. In addition, the newly developed plate model includes the models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases and recovers the Bernoulli–Euler beam model incorporating the microstructure, surface energy and foundation effects. To illustrate the new model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved. In Chapter 3, a new non-classical model for circular Kirchhoff plates subjected to axisymmetric loading is presented based on the same modified couple stress theory and surface elasticity theory but using cylindrical polar coordinates. The new non-classical plate model includes the circular plate models considering the microstructure influence or the surface energy effect alone as special cases and recovers the classical elasticity-based Kirchhoff plate model when both the microstructure and surface energy effects are suppressed. To demonstrate the new model, the static bending problem of a clamped solid circular Kirchhoff plate subjected to a uniform normal load is analytically solved. In Chapter 4, a new non-classical model for a Mindlin plate resting on an elastic foundation is developed in a general form using the modified couple stress theory, the surface elasticity theory and the two-parameter Winkler–Pasternak foundation model, which are the same as those employed in Chapter 2. It includes all five kinematic variables possible for a Mindlin plate and treats the microstructure, surface energy and foundation effects in a unified manner. The current non-classical plate model reduces to its classical elasticity-based counterpart when the microstructure, surface energy and foundation effects are all neglected. In addition, the new model includes the Mindlin plate models considering the microstructure dependence or the surface energy effect or the foundation influence alone as special cases, and it degenerates to the Timoshenko beam model including the microstructure effect. To illustrate the new Mindlin plate model, the static bending and free vibration problems of a simply supported rectangular plate are analytically solved by directly applying the general formulae derived. In Chapter 5, a new non-classical model for circular Mindlin plates is furnished using the modified couple stress theory, the surface elasticity theory, Hamilton’s principle, and cylindrical polar coordinates, as was done in Chapter 3. The non-classical model includes the circular plate models considering the microstructure influence only and the surface energy effect alone as special cases, and it recovers the classical elasticity-based circular Mindlin plate model when both the microstructure and surface energy effects are not considered. To illustrate the new model, the static bending problem of a clamped circular Mindlin plate under a uniform normal load is analytically solved. In Chapter 6, a new model for determining band gaps for flexural elastic wave propagation in a periodic composite plate structure with square inclusions is developed by directly using the non-classical model for Kirchhoff plates presented in Chapter 2. The band gaps predicted by the newly developed model depend on the microstructure and surface elasticity of each constituent material, the elastic foundation moduli, the unit cell size, and the volume fraction of the inclusion phase. To quantitatively illustrate the effects of these factors, a parametric study is conducted. In Chapter 7, a new model for predicting band gaps for flexural elastic wave propagation in a periodic composite plate structure with square or cruciform inclusions is provided by using the non-classical model for Mindlin plates proposed in Chapter 4. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each consitituent material, the unit cell size, and the volume fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted for periodic composite plate structures containing square and cruciform inclusions

    Size effects on a one-dimensional defective phononic crystal sensor

    No full text
    The influence of size effects on one-dimensional defective phononic crystal (PnC) sensors based on simplified strain gradient elasticity theory (SSGET) is studied in this paper. PnCs have been widely used in high-sensitivity gas and liquid sensors by introducing defects to disrupt the perfect PnC modes. In comparison with classical elasticity theory, the SSGET includes two microstructure-related material parameters that can accurately reflect the size effects of the structure. In this paper, the stiffness matrix method was used to calculate the transmission coefficients of the proposed model, avoiding the numerical instability of the transfer matrix method. The results show that the size effects at the microscale affect the perfect PnC bandgap’s frequency range, and the microstructure constants impress the resonant frequency while detecting liquids. Consequently, the accuracy of the sensor is reduced. These findings provide a theoretical basis for designing microscale PnC sensors

    A non-classical couple stress based Mindlin plate finite element framework for tuning band gaps of periodic composite micro plates

    No full text
    International audienceComposite micro plates with periodic microstructure at very small length scale have been a focus of intensive research. When length scale of the microstructure descends below millimetre level, size effects may emerge. To account for microstructure effect on the elastic wave band gap of microscopic composite plates, we propose a numerical framework based on the modified couple stress theory of elasto-dynamics associated with a non-classical 3-node triangular (T3) Mindlin plate finite element. Since couple stress elasto-dynamics incorporates dependence on the material scale length, the proposed approach is sensitive to size effects with microscopic problems while remaining compatible with macroscopic problems. In terms of the finite element implementation, we implemented a T3 plate finite element with 9 nodal degrees of freedom under the Mindlin kinematics assumptions. The approach presents enhanced flexibility to discretize complex microstructures owing to the triangular element topology, and offers sensitivity to account for size effects of microscopic problems. Therefore, it represents a good option for the design of band gap periodic composite micro plates. Validation of the framework is performed through comparison with both analytical and numerical models

    Bending and Wave Propagation Analysis of Magneto-Electro-Elastic Functionally Graded Porous Microbeams

    No full text
    In this paper, a microstructure-dependent magneto-electro-elastic functionally graded porous (MEEFGP) beam model is proposed using a variational approach. To account for the microstructure effect, the extended modified couple stress theory is incorporated in the new model. In addition, the porosity variation of the two-phase beam model through the thickness direction is also considered. The new developed model is verified in terms of its correctness with a FEM model. Based on the equations of motion and boundary conditions derived by Hamilton’s principle, the static bending and wave propagation behaviors of the new model are analytically determined. The results prove the existence of the microstructure effect and the magneto-electro-elastic multi-field coupling effect. There are significant differences between the new model and the classical model at the microscale. Moreover, the porosity also has an important influence on the mechanical properties of the new model. The results predicted by the new model can provide the theoretical basis for the design of microscale acoustic wave devices and micro-electro-mechanical systems

    Virtual Work Principle for Piezoelectric Semiconductors and Its Application on Extension and Bending of ZnO Nanowires

    No full text
    This paper presents the principle of virtual work (PVW) for piezoelectric semiconductors (PSs), which extends the piezoelectric dielectrics to involve the semiconducting effect. As an application of the PVW, a one-dimensional (1D) approximation theory for the extension and bending of PS nanowires is established by directly applying the PVW and Bernoulli–Euler beam theory with the aid of the second-order approximation of electrostatic potential. To illustrate the new model, the mechanical displacement, electrostatic potential, and concentration of electrons for extension and bending deformation of n-type ZnO nanowires are analytically determined. Additionally, numerical results show that, for n-type Zinc Oxide nanowires, the distribution of electrostatic potential is anti-symmetric along the thickness direction for extension deformation. In contrast, the bending deformation causes a symmetric distribution of electrostatic potential characterized by the zeroth-order and the second-order electrostatic potential. Furthermore, these two different deformations result in the redistribution of electrons. The electrostatic potential can be tuned by adjusting the amplitude of the applied mechanical load. Moreover, we find that the increase in doping level will reduce the magnitude of electrostatic potential due to the screening effect. The presented PVW provides a general approach to establishing structural theories and an effective way of implementing numerical methods

    A \u3cem\u3eτ\u3c/em\u3e-Symmetry Algebra of the Generalized Derivative Nonlinear Schrödinger Soliton Hierarchy with an Arbitrary Parameter

    No full text
    A matrix spectral problem is researched with an arbitrary parameter. Through zero curvature equations, two hierarchies are constructed of isospectral and nonisospectral generalized derivative nonlinear schrödinger equations. The resulting hierarchies include the Kaup-Newell equation, the Chen-Lee-Liu equation, the Gerdjikov-Ivanov equation, the modified Korteweg-de Vries equation, the Sharma-Tasso-Olever equation and a new equation as special reductions. The integro-differential operator related to the isospectral and nonisospectral hierarchies is shown to be not only a hereditary but also a strong symmetry of the whole isospectral hierarchy. For the isospectral hierarchy, the corresponding τ -symmetries are generated from the nonisospectral hierarchy and form an infinite-dimensional symmetry algebra with the K-symmetries
    corecore