12 research outputs found

    Multi-Objective Scheduling of Electric Vehicles in Smart Distribution Network

    No full text
    Due to the energy savings and environmental protection they provide, plug-in electric vehicles (PEVs) are increasing in number quickly. Rapid development of PEVs brings new opportunities and challenges to the electricity distribution network’s dispatching. A high number of uncoordinated charging PEVs has significant negative impacts on the secure and economic operation of a distribution network. In this paper, a bi-level programming approach that coordinates PEVs’ charging with the network load and electricity price of the open market is presented. The major objective of the upper level model is to minimize the total network costs and the deviation of electric vehicle aggregators’ charging power and the equivalent power. The subsequent objective of the lower level model after the upper level decision is to minimize the dispatching deviation of the sum of PEVs’ charging power and their optimization charging power under the upper level model. An improved particle swarm optimization algorithm is used to solve the bi-level programming. Numerical studies using a modified IEEE 69-bus distribution test system including six electric vehicle aggregators verify the efficiency of the proposed model

    Changes in the Quality of Myofibrillar Protein Gel Damaged by High Doses of Epigallocatechin-3-Gallate as Affected by the Addition of Amylopectin

    No full text
    This work investigated the improvement of amylopectin addition on the quality of myofibrillar proteins (MP) gel damaged by high doses of epigallocatechin-3-gallate (EGCG, 80 μM/g protein). The results found that the addition of amylopectin partially alleviated the unfolding of MP induced by oxidation and EGCG, and enhanced the structural stability of MP. Amylopectin blocked the loss of the free amine group and thiol group, and increased the solubility of MP from 7.0% to 9.5%. The carbonyl analysis demonstrated that amylopectin addition did not weaken the antioxidative capacity of EGCG. It was worth noting that amylopectin significantly improved the gel properties of MP treated with a high dose of EGCG. The cooking loss was reduced from 51.2% to 35.5%, and the gel strength was reduced from 0.41 N to 0.29 N after adding high concentrations of amylopectin (A:E(8:1)). This was due to that amylopectin filled the network of MP gel after absorbing water and changed into a swelling state, and partially reduced interactions between EGCG and oxidized MP. This study indicated that amylopectin could be used to increase the polyphenol loads to provide a more lasting antioxidant effect for meat products and improve the deterioration of gel quality caused by oxidation and high doses of EGCG

    An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds

    No full text
    Eutrophication of small prairie reservoirs presents a major challenge in water quality management and has led to a need for predictive water quality modeling. Studies are lacking in effectively integrating watershed models and reservoir models to explore nutrient dynamics and eutrophication pattern. A water quality model specific to small prairie water bodies is also desired in order to highlight key biogeochemical processes with an acceptable degree of parameterization. This study presents a Multi-level Watershed-Reservoir Modeling System (MWRMS) to simulate hydrological and biogeochemical processes in small prairie watersheds. It integrated a watershed model, a hydrodynamic model and an eutrophication model into a flexible modeling framework. It can comprehensively describe hydrological and biogeochemical processes across different spatial scales and effectively deal with the special drainage structure of small prairie watersheds. As a key component of MWRMS, a three-dimensional Willows Reservoir Eutrophication Model (WREM) is developed to addresses essential biogeochemical processes in prairie reservoirs and to generate 3D distributions of various water quality constituents; with a modest degree of parameterization, WREM is able to meet the limit of data availability that often confronts the modeling practices in small watersheds. MWRMS was applied to the Assiniboia Watershed in southern Saskatchewan, Canada. Extensive efforts of field work and lab analysis were undertaken to support model calibration and validation. MWRMS demonstrated its ability to reproduce the observed watershed water yield, reservoir water levels and temperatures, and concentrations of several water constituents. Results showed that the aquatic systems in the Assiniboia Watershed were nitrogen-limited and sediment flux played a crucial role in reservoir nutrient budget and dynamics. MWRMS can provide a broad context of decision support for water resources management and water quality protection in the prairie region.Peer reviewed: YesNRC publication: Ye
    corecore