4,140 research outputs found

    Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    Full text link
    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform in photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding

    General time-reversal equivariant neural network potential for magnetic materials

    Full text link
    This study introduces time-reversal E(3)-equivariant neural network and SpinGNN++ framework for constructing a comprehensive interatomic potential for magnetic systems, encompassing spin-orbit coupling and noncollinear magnetic moments. SpinGNN++ integrates multitask spin equivariant neural network with explicit spin-lattice terms, including Heisenberg, Dzyaloshinskii-Moriya, Kitaev, single-ion anisotropy, and biquadratic interactions, and employs time-reversal equivariant neural network to learn high-order spin-lattice interactions using time-reversal E(3)-equivariant convolutions. To validate SpinGNN++, a complex magnetic model dataset is introduced as a benchmark and employed to demonstrate its capabilities. SpinGNN++ provides accurate descriptions of the complex spin-lattice coupling in monolayer CrI3_3 and CrTe2_2, achieving sub-meV errors. Importantly, it facilitates large-scale parallel spin-lattice dynamics, thereby enabling the exploration of associated properties, including the magnetic ground state and phase transition. Remarkably, SpinGNN++ identifies a new ferrimagnetic state as the ground magnetic state for monolayer CrTe2, thereby enriching its phase diagram and providing deeper insights into the distinct magnetic signals observed in various experiments.Comment: 27 pages,6 figures and 3 table

    Comparison of the Electrochemical Performance and Thermal Stability for Three Kinds of Charged Cathodes

    Get PDF
    The electrochemical performance and thermal stability of Li(Ni0.5Co0.2Mn0.3)O2, LiMn2O4, and LiFePO4 are investigated by the multi-channel battery cycler, electrochemical workstation, thermogravimetric analysis (TGA) and C80 instrument in this work. For electrochemical performance, Li(Ni0.5Co0.2Mn0.3)O2 shows the highest specific capacity but the worst cycle stability. For the thermal stability, the experimental results of thermogravimetry and C80 indicate that the charged Li(Ni0.5Co0.2Mn0.3)O2 has the worst thermal stability compared with charged LiFePO4 and LiMn2O4. It is also testified by calculating the chemical kinetic parameters of cathode materials based on the Arrhenius law. The pure Li(Ni0.5Co0.2Mn0.3)O2 starts to self-decompose at around 250°C with total heat generation of −88 J/g. As for a full battery, the total heat generation is −810 J/g with exothermic peak temperature of 242°C. The present results show that thermal runaway is more likely to occur for Li(Ni0.5Co0.2Mn0.3)O2 with the full battery

    Developmental iodine deficiency and hypothyroidism impair neural development in rat hippocampus: involvement of doublecortin and NCAM-180

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developmental iodine deficiency results in inadequate thyroid hormone (TH), which damages the hippocampus. Here, we explored the roles of hippocampal doublecortin and neural cell adhesion molecule (NCAM)-180 in developmental iodine deficiency and hypothyroidism.</p> <p>Methods</p> <p>Two developmental rat models were established with either an iodine-deficient diet, or propylthiouracil (PTU)-adulterated water (5 ppm or 15 ppm) to impair thyroid function, in pregnant rats from gestational day 6 until postnatal day (PN) 28. Silver-stained neurons and protein levels of doublecortin and NCAM-180 in several hippocampal subregions were assessed on PN14, PN21, PN28, and PN42.</p> <p>Results</p> <p>The results show that nerve fibers in iodine-deficient and 15 ppm PTU-treated rats were injured on PN28 and PN42. Downregulation of doublecortin and upregulation of NCAM-180 were observed in iodine-deficient and 15 ppm PTU-treated rats from PN14 on. These alterations were irreversible by the restoration of serum TH concentrations on PN42.</p> <p>Conclusion</p> <p>Developmental iodine deficiency and hypothyroidism impair the expression of doublecortin and NCAM-180, leading to nerve fiber malfunction and thus impairments in hippocampal development.</p

    Whole brain radiotherapy plus simultaneous in-field boost with image guided intensity-modulated radiotherapy for brain metastases of non-small cell lung cancer

    Get PDF
    BACKGROUND: Whole brain radiotherapy (WBRT) plus sequential focal radiation boost is a commonly used therapeutic strategy for patients with brain metastases. However, recent reports on WBRT plus simultaneous in-field boost (SIB) also showed promising outcomes. The objective of present study is to retrospectively evaluate the efficacy and toxicities of WBRT plus SIB with image guided intensity-modulated radiotherapy (IG-IMRT) for inoperable brain metastases of NSCLC. METHODS: Twenty-nine NSCLC patients with 87 inoperable brain metastases were included in this retrospective study. All patients received WBRT at a dose of 40 Gy/20 f, and SIB boost with IG-IMRT at a dose of 20 Gy/5 f concurrent with WBRT in the fourth week. Prior to each fraction of IG-IMRT boost, on-line positioning verification and correction were used to ensure that the set-up errors were within 2 mm by cone beam computed tomography in all patients. RESULTS: The one-year intracranial control rate, local brain failure rate, and distant brain failure rate were 62.9%, 13.8%, and 19.2%, respectively. The two-year intracranial control rate, local brain failure rate, and distant brain failure rate were 42.5%, 30.9%, and 36.4%, respectively. Both median intracranial progression-free survival and median survival were 10 months. Six-month, one-year, and two-year survival rates were 65.5%, 41.4%, and 13.8%, corresponding to 62.1%, 41.4%, and 10.3% of intracranial progression-free survival rates. Patients with Score Index for Radiosurgery in Brain Metastases (SIR) >5, number of intracranial lesions <3, and history of EGFR-TKI treatment had better survival. Three lesions (3.45%) demonstrated radiation necrosis after radiotherapy. Grades 2 and 3 cognitive impairment with grade 2 radiation leukoencephalopathy were observed in 4 (13.8%) and 4 (13.8%) patients. No dosimetric parameters were found to be associated with these late toxicities. Patients received EGFR-TKI treatment had higher incidence of grades 2–3 cognitive impairment with grade 2 leukoencephalopathy. CONCLUSIONS: WBRT plus SIB with IG-IMRT is a tolerable and effective treatment for NSCLC patients with inoperable brain metastases. However, the results of present study need to be examined by the prospective investigations

    Genome-Wide Characterization and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cinnamomum camphora ('Gantong 1')

    Get PDF
    Cinnamomum camphora is one of the most commonly used tree species in landscaping. Improving its ornamental traits, particularly bark and leaf colors, is one of the key breeding goals. The basic helix-loop-helix (bHLH) transcription factors (TFs) are crucial in controlling anthocyanin biosynthesis in many plants. However, their role in C. camphora remains largely unknown. In this study, we identified 150 bHLH TFs (CcbHLHs) using natural mutant C. camphora 'Gantong 1', which has unusual bark and leaf colors. Phylogenetic analysis revealed that 150 CcbHLHs were divided into 26 subfamilies which shared similar gene structures and conserved motifs. According to the protein homology analysis, we identified four candidate CcbHLHs that were highly conserved compared to the TT8 protein in A. thaliana. These TFs are potentially involved in anthocyanin biosynthesis in C. camphora. RNA-seq analysis revealed specific expression patterns of CcbHLHs in different tissue types. Furthermore, we verified expression patterns of seven CcbHLHs (CcbHLH001, CcbHLH015, CcbHLH017, CcbHLH022, CcbHLH101, CcbHLH118, and CcbHLH134) in various tissue types at different growth stages using qRT-PCR. This study opens a new avenue for subsequent research on anthocyanin biosynthesis regulated by CcbHLH TFs in C. camphora

    Anti-cancer natural products isolated from chinese medicinal herbs

    Get PDF
    In recent years, a number of natural products isolated from Chinese herbs have been found to inhibit proliferation, induce apoptosis, suppress angiogenesis, retard metastasis and enhance chemotherapy, exhibiting anti-cancer potential both in vitro and in vivo. This article summarizes recent advances in in vitro and in vivo research on the anti-cancer effects and related mechanisms of some promising natural products. These natural products are also reviewed for their therapeutic potentials, including flavonoids (gambogic acid, curcumin, wogonin and silibinin), alkaloids (berberine), terpenes (artemisinin, β-elemene, oridonin, triptolide, and ursolic acid), quinones (shikonin and emodin) and saponins (ginsenoside Rg3), which are isolated from Chinese medicinal herbs. In particular, the discovery of the new use of artemisinin derivatives as excellent anti-cancer drugs is also reviewed
    corecore