16,806 research outputs found

    Quantum anti-quenching of radiation from laser-driven structured plasma channels

    Get PDF
    We demonstrate that in the interaction of a high-power laser pulse with a structured solid-density plasma-channel, clear quantum signatures of stochastic radiation emission manifest, disclosing a novel avenue to studying the quantized nature of photon emission. In contrast to earlier findings we observe that the total radiated energy for very short interaction times, achieved by studying thin plasma channel targets, is significantly larger in a quantum radiation model as compared to a calculation including classical radiation reaction, i.e., we observe quantum anti-quenching. By means of a detailed analytical analysis and a refined test particle model, corroborated by a full kinetic plasma simulation, we demonstrate that this counter-intuitive behavior is due to the constant supply of energy to the setup through the driving laser. We comment on an experimental realization of the proposed setup, feasible at upcoming high-intensity laser facilities, since the required thin targets can be manufactured and the driving laser pulses provided with existing technology.Comment: 6 pages, 3 figure

    Thermodynamics of an accelerated expanding universe

    Full text link
    We investigate the laws of thermodynamics in an accelerating universe driven by dark energy with a time-dependent equation of state. In the case we consider that the physically relevant part of the Universe is that envelopped by the dynamical apparent horizon, we have shown that both the first law and second law of thermodynamics are satisfied. On the other hand, if the boundary of the Universe is considered to be the cosmological event horizon the thermodynamical description based on the definitions of boundary entropy and temperature breaks down. No parameter redefinition can rescue the thermodynamics laws from such a fate, rendering the cosmological event horizon unphysical from the point of view of the laws of thermodynamics.Comment: 13 pages, 2 figure

    Lyapunov Spectra in SU(2) Lattice Gauge Theory

    Full text link
    We develop a method for calculating the Lyapunov characteristic exponents of lattice gauge theories. The complete Lyapunov spectrum of SU(2) gauge theory is obtained and Kolmogorov-Sinai entropy is calculated. Rapid convergence with lattice size is found.Comment: 7pp, DUKE-TH-93-5

    Strong energy enhancement in a laser-driven plasma-based accelerator through stochastic friction

    Get PDF
    Conventionally, friction is understood as an efficient dissipation mechanism depleting a physical system of energy as an unavoidable feature of any realistic device involving moving parts, e.g., in mechanical brakes. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.e., the energy loss of an accelerated charge due to the emission of radiation. We demonstrate analytically and numerically how radiation friction can enhance the performance of a specific class of laser-driven particle accelerators. We find the unexpected directional energy boost to be due to the particles' energy being reduced through friction whence the driving laser can accelerate them more efficiently. In a quantitative case we find the energy of the laser-accelerated particles to be enhanced by orders of magnitude.Comment: 14 pages, 3 figure

    Breaking scale invariance from a singular inflaton potential

    Full text link
    In this paper we break the scale invariance of the primordial power spectrum of curvature perturbations of inflation. Introducing a singular behaviour due to spontaneous symmetry breaking in the inflaton potential, we obtain fully analytic expressions of scale dependent oscillation and a modulation in power on small scale in the primordial spectrum. And we give the associated cosmic microwave background and matter power spectra which we can observe now and discuss the signature of the scale dependence. We also address the possibility of whether some inflationary model with featured potential might mimic the predictions of the scale invariant power spectrum. We present some examples which illustrate such degeneracies.Comment: 20 pages, 9 figures; Discussion expanded and references added; Miscellaneous typos correcte

    Thermodynamical properties of dark energy

    Get PDF
    We have investigated the thermodynamical properties of dark energy. Assuming that the dark energy temperature T∌a−nT\sim a^{-n} and considering that the volume of the Universe enveloped by the apparent horizon relates to the temperature, we have derived the dark energy entropy. For dark energy with constant equation of state w>−1w>-1 and the generalized Chaplygin gas, the derived entropy can be positive and satisfy the entropy bound. The total entropy, including those of dark energy, the thermal radiation and the apparent horizon, satisfies the generalized second law of thermodynamics. However, for the phantom with constant equation of state, the positivity of entropy, the entropy bound, and the generalized second law cannot be satisfied simultaneously.Comment: 5 two column pages, 2 figures; v2: discussion on thermal equilibrium with the horizon is added, v3: minor corrections, published in PR

    Persistence of locality in systems with power-law interactions

    Get PDF
    Motivated by recent experiments with ultra-cold matter, we derive a new bound on the propagation of information in DD-dimensional lattice models exhibiting 1/rα1/r^{\alpha} interactions with α>D\alpha>D. The bound contains two terms: One accounts for the short-ranged part of the interactions, giving rise to a bounded velocity and reflecting the persistence of locality out to intermediate distances, while the other contributes a power-law decay at longer distances. We demonstrate that these two contributions not only bound but, except at long times, \emph{qualitatively reproduce} the short- and long-distance dynamical behavior following a local quench in an XYXY chain and a transverse-field Ising chain. In addition to describing dynamics in numerous intractable long-range interacting lattice models, our results can be experimentally verified in a variety of ultracold-atomic and solid-state systems.Comment: 5 pages, 4 figures, version accepted by PR
    • 

    corecore