1,914 research outputs found

    Synthesis of highly elastic biocompatible polyurethanes based on bio-based isosorbide and poly(tetramethylene glycol) and their properties.

    Get PDF
    Bio-based high elastic polyurethanes were prepared from hexamethylene diisocyanate and various ratios of isosorbide to poly(tetramethylene glycol) as a diol by a simple one-shot bulk polymerization without a catalyst. Successful synthesis of the polyurethanes was confirmed by Fourier transform-infrared spectroscopy and (1)H nuclear magnetic resonance. Thermal properties were determined by differential scanning calorimetry and thermogravimetric analysis. The glass transition temperature was -47.8℃. The test results showed that the poly(tetramethylene glycol)/isosorbide-based elastomer exhibited not only excellent stress-strain properties but also superior resilience to the existing polyether-based polyurethane elastomers. The static and dynamic properties of the polyether/isosorbide-based thermoplastic elastomer were more suitable for dynamic applications. Moreover, such rigid diols impart biocompatible and bioactive properties to thermoplastic polyurethane elastomers. Degradation tests performed at 37℃ in phosphate buffer solution showed a mass loss of 4-9% after 8 weeks, except for the polyurethane with the lowest isosorbide content, which showed an initial rapid weight loss. These polyurethanes offer significant promise due to soft, flexible and biocompatible properties for soft tissue augmentation and regeneration

    Tunable ultranarrow linewidth of cavity induced by interacting dark resonances

    Full text link
    A scheme for getting a tunable ultranarrow linewidth of a cavity due to an embedded four-level atomic medium with double-dark resonances is proposed. It is shown that the steep dispersion induced by double-dark resonances in the transparency window leads to the ultranarrow transmission peak. Compared with the case of a single-dark-resonance system, the linewidth can be narrowed even by one order under proper conditions. Furthermore, the position of the ultranarrow peak can be engineered by varying the intensity and detuning of the control field.Comment: 4 pages, 5 figure

    BRCA1 positively regulates FOXO3 expression by restricting FOXO3 gene methylation and epigenetic silencing through targeting EZH2 in breast cancer.

    Get PDF
    BRCA1 mutation or depletion correlates with basal-like phenotype and poor prognosis in breast cancer but the underlying reason remains elusive. RNA and protein analysis of a panel of breast cancer cell lines revealed that BRCA1 deficiency is associated with downregulation of the expression of the pleiotropic tumour suppressor FOXO3. Knockdown of BRCA1 by small interfering RNA (siRNA) resulted in downregulation of FOXO3 expression in the BRCA1-competent MCF-7, whereas expression of BRCA1 restored FOXO3 expression in BRCA1-defective HCC70 and MDA-MB-468 cells, suggesting a role of BRCA1 in the control of FOXO3 expression. Treatment of HCC70 and MDA-MB-468 cells with either the DNA methylation inhibitor 5-aza-2'-deoxycitydine, the N-methyltransferase enhancer of zeste homologue 2 (EZH2) inhibitor GSK126 or EZH2 siRNA induced FOXO3 mRNA and protein expression, but had no effect on the BRCA1-competent MCF-7 cells. Chromatin immunoprecipitation (ChIP) analysis demonstrated that BRCA1, EZH2, DNMT1/3a/b and histone H3 lysine 27 trimethylation (H3K27me3) are recruited to the endogenous FOXO3 promoter, further advocating that these proteins interact to modulate FOXO3 methylation and expression. In addition, ChIP results also revealed that BRCA1 depletion promoted the recruitment of the DNA methyltransferases DNMT1/3a/3b and the enrichment of the EZH2-mediated transcriptional repressive epigenetic marks H3K27me3 on the FOXO3 promoter. Methylated DNA immunoprecipitation assays also confirmed increased CpG methylation of the FOXO3 gene on BRCA1 depletion. Analysis of the global gene methylation profiles of a cohort of 33 familial breast tumours revealed that FOXO3 promoter methylation is significantly associated with BRCA1 mutation. Furthermore, immunohistochemistry further suggested that FOXO3 expression was significantly associated with BRCA1 status in EZH2-positive breast cancer. Consistently, high FOXO3 and EZH2 mRNA levels were significantly associated with good and poor prognosis in breast cancer, respectively. Together, these data suggest that BRCA1 can prevent and reverse FOXO3 suppression via inhibiting EZH2 and, consequently, its ability to recruit the transcriptional repressive H3K27me3 histone marks and the DNA methylases DNMT1/3a/3b, to induce DNA methylation and gene silencing on the FOXO3 promoter

    Genetic and cellular aspects of the establishment of histocompatible stem cells: information gained from an animal model

    Get PDF
    The establishment of patient-specific histocompatible stem cells may be an alternative for overcoming current limitations in stem cell engineering. We are developing an animal model to assist the establishment of histocompatible, autologous stem cells. In this process, we obtained valuable information on establishing and characterizing stem cells. As an initial step, we succeeded in establishing histocompatible stem cells using preantral follicle cultures and subsequent parthenogenetic activation. The gene expression profile of the established stem cells was similar to that of embryonic stem cells (ESCs) derived from normal fertilization. On the other hand, we propose a way to derive histocompatible, ESC-like cells by co-culturing ovarian stromal cells with feeder fibroblasts, which may allow the derivation of stem cells from somatic tissue. However, more progress regarding the establishment and elucidation on origination of established cell lines is necessary to use this genetic manipulation-free procedure. Nevertheless, relevant information on the process will help to stimulate preclinical research on cell transformation into differentiated, undifferentiated, and even cancerous cells, as well as clinical studies on the application of induced pluripotent cells

    Functional differences in transport properties of natural HKT1;1 variants influence shoot Na(+) exclusion in grapevine rootstocks

    Get PDF
    Under salinity, Vitis spp. rootstocks can mediate salt (NaCl) exclusion from grafted V. vinifera scions enabling higher grapevine yields and production of superior wines with lower salt content. Until now, the genetic and mechanistic elements controlling sodium (Na(+) ) exclusion in grapevine were unknown. Using a cross between two Vitis interspecific hybrid rootstocks, we mapped a dominant quantitative trait locus (QTL) associated with leaf Na(+) exclusion (NaE) under salinity stress. The NaE locus encodes six high-affinity potassium transporters (HKT). Transcript profiling and functional characterization in heterologous systems identified VisHKT1;1 as the best candidate gene for controlling leaf Na(+) exclusion. We characterized four proteins encoded by unique VisHKT1;1 alleles from the parents, and revealed that the dominant HKT variants exhibit greater Na(+) conductance with less rectification than the recessive variants. Mutagenesis of VisHKT1;1 and TaHKT1.5-D from bread wheat, demonstrated that charged amino acid residues in the eighth predicted transmembrane domain of HKT proteins reduces inward Na(+) conductance, and causes inward rectification of Na(+) transport. The origin of the recessive VisHKT1;1 alleles was traced to V. champinii and V. rupestris. We propose that the genetic and functional data presented here will assist with breeding Na(+) -tolerant grapevine rootstocks.Sam W. Henderson, Jake D. Dunlevy, Yue Wu, Deidre H. Blackmore, Rob R. Walker, Everard J. Edwards, Matthew Gilliham, Amanda R. Walke

    Biopsy confirmation of metastatic sites in breast cancer patients:clinical impact and future perspectives

    Get PDF
    Determination of hormone receptor (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor 2 status in the primary tumor is clinically relevant to define breast cancer subtypes, clinical outcome,and the choice of therapy. Retrospective and prospective studies suggest that there is substantial discordance in receptor status between primary and recurrent breast cancer. Despite this evidence and current recommendations,the acquisition of tissue from metastatic deposits is not routine practice. As a consequence, therapeutic decisions for treatment in the metastatic setting are based on the features of the primary tumor. Reasons for this attitude include the invasiveness of the procedure and the unreliable outcome of biopsy, in particular for biopsies of lesions at complex visceral sites. Improvements in interventional radiology techniques mean that most metastatic sites are now accessible by minimally invasive methods, including surgery. In our opinion, since biopsies are diagnostic and changes in biological features between the primary and secondary tumors can occur, the routine biopsy of metastatic disease needs to be performed. In this review, we discuss the rationale for biopsy of suspected breast cancer metastases, review issues and caveats surrounding discordance of biomarker status between primary and metastatic tumors, and provide insights for deciding when to perform biopsy of suspected metastases and which one (s) to biopsy. We also speculate on the future translational implications for biopsy of suspected metastatic lesions in the context of clinical trials and the establishment of bio-banks of biopsy material taken from metastatic sites. We believe that such bio-banks will be important for exploring mechanisms of metastasis. In the future,advances in targeted therapy will depend on the availability of metastatic tissue

    Quantum Fluctuation Theorems

    Full text link
    Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluctuating thermodynamic quantities. We review the recent progress in quantum fluctuation theorems, including the studies of Maxwell's demon which plays a crucial role in connecting thermodynamics with information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects and New Directions", (Springer International Publishing, 2018

    Population ageing and deaths attributable to ambient PM2·5 pollution: a global analysis of economic cost

    Get PDF
    BACKGROUND: The health impacts of ambient air pollution impose large costs on society. Although all people are exposed to air pollution, the older population (ie, those aged ≥60 years) tends to be disproportionally affected. As a result, there is growing concern about the health impacts of air pollution as many countries undergo rapid population ageing. We investigated the spatial and temporal variation in the economic cost of deaths attributable to ambient air pollution and its interaction with population ageing from 2000 to 2016 at global and regional levels. METHODS: In this global analysis, we developed an age-adjusted measure of the value of a statistical life-year (VSLY) to estimate the economic cost of deaths attributable to ambient PM2·5 pollution using Global Burden of Diseases, Injuries, and Risk Factors Study 2017 data and country-level socioeconomic information. First, we estimated the global age-specific and cause-specific mortality and years of life lost (YLLs) attributable to PM2·5 pollution using the global exposure mortality model and global estimates of exposure at 0·1° × 0·1° (about 11 km × 11 km at the equator) resolution. Second, for each year between 2000 and 2016, we translated the YLLs within each age group into a health-related cost using a country-specific, age-adjusted measure of VSLY. Third, we decomposed the major driving factors that contributed to the temporal change in health costs related to PM2·5. Finally, we did a sensitivity test to analyse the variability of the estimated health costs to four alternative valuation measures. We identified the uncertainty intervals (UIs) from 1000 draws of the parameters and concentration–response functions by age, cause, country, and year. All economic values are reported in 2011 purchasing power parity-adjusted US dollars. All simulations were done with R, version 3.6.0. FINDINGS: Globally, in 2016, PM2·5 was estimated to have caused 8·42 million (95% UI 6·50–10·52) attributable deaths, which was associated with 163·68 million (116·03–219·44) YLLs. In 2016, the global economic cost of deaths attributable to ambient PM_{2·5} pollution for the older population was US2⋅40trillion(1⋅89–2⋅93)accountingfor592·40 trillion (1·89–2·93) accounting for 59% (59–60) of the cost for the total population (4·09 trillion [3·19–5·05]). The economic cost per capita for the older population was $2739 (2160–3345) in 2016, which was 10 times that of the younger population (ie, those aged <60 years). By assessing the factors that contributed to economic costs, we found that increases in these factors changed the total economic cost by 77% for gross domestic product (GDP) per capita, 21% for population ageing, 16% for population growth, −41% for age-specific mortality, and −0·4% for PM_{2·5} exposure. INTERPRETATION: The economic cost of ambient PM_{2·5} borne by the older population almost doubled between 2000 and 2016, driven primarily by GDP growth, population ageing, and population growth. Compared with younger people, air pollution leads to disproportionately higher health costs among older people, even after accounting for their relatively shorter life expectancy and increased disability. As the world's population is ageing, the disproportionate health cost attributable to ambient PM2·5 pollution potentially widens the health inequities for older people. Countries with severe air pollution and rapid ageing rates need to take immediate actions to improve air quality. In addition, strategies aimed at enhancing health-care services, especially targeting the older population, could be beneficial for reducing the health costs of ambient air pollution. FUNDING: National Natural Science Foundation of China, China Postdoctoral Science Foundation, and Qiushi Foundation

    Genetic Labeling of Neuronal Subsets through Enhancer Trapping in Mice

    Get PDF
    The ability to label, visualize, and manipulate subsets of neurons is critical for elucidating the structure and function of individual cell types in the brain. Enhancer trapping has proved extremely useful for the genetic manipulation of selective cell types in Drosophila. We have developed an enhancer trap strategy in mammals by generating transgenic mice with lentiviral vectors carrying single-copy enhancer-detector probes encoding either the marker gene lacZ or Cre recombinase. This transgenic strategy allowed us to genetically identify a wide variety of neuronal subpopulations in distinct brain regions. Enhancer detection by lentiviral transgenesis could thus provide a complementary method for generating transgenic mouse libraries for the genetic labeling and manipulation of neuronal subsets
    • …
    corecore